Skip to main content

Automatic Generation of Riemann Surface Meshes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6130))

Abstract

Riemann surfaces naturally appear in the analysis of complex functions that are branched over the complex plane. However, they usually possess a complicated topology and are thus hard to understand. We present an algorithm for constructing Riemann surfaces as meshes in \({\mathbb R}^3\) from explicitly given branch points with corresponding branch indices. The constructed surfaces cover the complex plane by the canonical projection onto \({\mathbb R}^2\) and can therefore be considered as multivalued graphs over the plane – hence they provide a comprehensible visualization of the topological structure.

Complex functions are elegantly visualized using domain coloring on a subset of \({\mathbb C}\). By applying domain coloring to the automatically constructed Riemann surface models, we generalize this approach to deal with functions which cannot be entirely visualized in the complex plane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yin, X., Jin, M., Gu, X.: Computing shortest cycles using universal covering space. Vis. Comput. 23(12), 999–1004 (2007)

    Article  Google Scholar 

  2. Kälberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using branched coverings. Comput. Graph. Forum. 26(3), 375–384 (2007)

    Article  Google Scholar 

  3. Trott, M.: Visualization of Riemann surfaces (2009), http://library.wolfram.com/examples/riemannsurface/ (retrieved December 8, 2009)

  4. Trott, M.: Visualization of Riemann surfaces of algebraic functions. Mathematica in Education and Research 6, 15–36 (1997)

    Google Scholar 

  5. Farris, F.A.: Visualizing complex-valued functions in the plane, http://www.maa.org/pubs/amm_complements/complex.html (retrieved December 8, 2009)

  6. Pergler, M.: Newton’s method, Julia and Mandelbrot sets, and complex coloring, http://users.arczip.com/pergler/mp/documents/ptr/ (retrieved December 8, 2009)

  7. da Silva, E.L.: Reviews of functions of one complex variable graphical representation from software development for learning support, http://sorzal-df.fc.unesp.br/~edvaldo/en/index.htm (retrieved on December 8, 2009)

  8. Lundmark, H.: Visualizing complex analytic functions using domain coloring (2004), http://www.mai.liu.se/~halun/complex/domain_coloring-unicode.html (retrieved on December 8, 2009)

  9. Hlavacek, J.: Complex domain coloring, http://www6.svsu.edu/~jhlavace/Complex_Domain_Coloring/index.html (retrieved on December 8, 2009)

  10. Poelke, K., Polthier, K.: Lifted domain coloring. Computer Graphics Forum 28(3), 735–742 (2009)

    Article  Google Scholar 

  11. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: SODA, pp. 1038–1046 (2005)

    Google Scholar 

  12. Farkas, H.: Riemann Surfaces. Springer, New York (1980)

    MATH  Google Scholar 

  13. Lamotke, K.: Riemannsche Flächen. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Forster, O.: Lectures on Riemann Surfaces, 4th edn. Graduate Texts in Mathematics. Springer, Heidelberg (1999)

    Google Scholar 

  15. Needham, T.: Visual Complex Analysis. Oxford University Press, Oxford (2000)

    Google Scholar 

  16. Kälberer, F., Nieser, M., Polthier, K.: Stripe parameterization of tubular surfaces. In: Topology-Based Methods in Visualization III. Mathematics and Visualization. Springer, Heidelberg (to appear 2010)

    Google Scholar 

  17. Riemann, B.: Grundlagen für eine allgemeine theorie der functionen einer veränderlichen complexen größe (1851)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nieser, M., Poelke, K., Polthier, K. (2010). Automatic Generation of Riemann Surface Meshes. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13411-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13410-4

  • Online ISBN: 978-3-642-13411-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics