Skip to main content

Bandit-Based Online Candidate Selection for Adjustable Autonomy

  • Conference paper

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 62))

Abstract

In many robot navigation scenarios, the robot is able to choose between some number of operating modes. One such scenario is when a robot must decide how to trade-off online between human and tele-operation control. When little prior knowledge about the performance of each operator is known, the robot must learn online to model their abilities and be able to take advantage of the strengths of each. We present a bandit-based online candidate selection algorithm that operates in this adjustable autonomy setting and makes choices to optimize overall navigational performance. We justify this technique through such a scenario on logged data and demonstrate how the same technique can be used to optimize the use of high-resolution overhead data when its availability is limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stentz, A., Bares, J., Pilarski, T., Stager, D.: The crusher system for autonomous navigation. In: AUVSIs Unmanned Systems North America (August 2007)

    Google Scholar 

  2. Silver, D., Bagnell, J.A., Stentz, A.: High performance outdoor navigation from overhead data using imitation learning. In: Robotics Science and Systems (June 2008)

    Google Scholar 

  3. Dias, M.B., Kannan, B., Browning, B., Jones, E., Argall, B., Dias, M.F., Zinck, M.B., Veloso, M.M., Stentz, A.: Sliding autonomy for peer-to-peer human-robot teams. In: 10th International Conference on Intelligent Autonomous Systems 2008 (July 2008)

    Google Scholar 

  4. Scerri, P., Pynadath, D.V., Tambe, M.: Towards adjustable autonomy for the real world. Journal of Artificial Intelligence Research 17, 2002 (2002)

    MathSciNet  Google Scholar 

  5. Grace, R., Byrne, V., Bierman, D., Legrand, J.-M., Gricourt, D., Davis, B., Staszewski, J., Carnahan, B.: A drowsy driver detection system for heavy vehicles. In: Proceedings of the 17th Digital Avionics Systems Conference, vol. 2, pp. I36/1 – I36/8 (2001)

    Google Scholar 

  6. Vahidi, A., Eskandarian, A.: Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems 4(3), 143–153 (2003)

    Article  Google Scholar 

  7. Bishop, R.: Intelligent vehicle applications worldwide. IEEE Intelligent Systems 15(1), 78–81 (2000)

    Google Scholar 

  8. Krotkov, E., Simmons, R., Cozman, F., Koenig, S.: Safeguarded teleoperation for lunar rovers: From human factors to field trials. In: Proc. IEEE Planetary Rover Technology and Systems Workshop (1996)

    Google Scholar 

  9. Krupa, A., de Mathelin, M., Doignon, C., Gangloff, J., Morel, G., Soler, L., Marescaux, J.: Development of semi-autonomous control modes in laparoscopic surgery using automatic visual servoing. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1306–1307. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Heger, F.W., Singh, S.: Sliding autonomy for complex coordinated multi-robot tasks: Analysis & experiments. In: Sukhatme, G.S., Schaal, S., Burgard, W., Fox, D. (eds.) Robotics: Science and Systems. The MIT Press, Cambridge (2006)

    Google Scholar 

  11. Fong, T.W., Thorpe, C., Baur, C.: Multi-robot remote driving with collaborative control. IEEE Transactions on Industrial Electronics (2003)

    Google Scholar 

  12. Stentz, A., Dima, C., Wellington, C., Herman, H., Stager, D.: A system for semi-autonomous tractor operations. Auton. Robots 13(1), 87–104 (2002)

    Article  MATH  Google Scholar 

  13. Horvitz, E., Jacobs, A., Hovel, D.: Attention-sensitive alerting. In: Laskey, K.B., Prade, H., Cal, S.F. (eds.) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), July 30-August 1, pp. 305–313. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  14. Hexmoor, H.: A cognitive model of situated autonomy. In: Kowalczyk, R., Loke, S.W., Reed, N.E., Graham, G. (eds.) PRICAI-WS 2000. LNCS (LNAI), vol. 2112, pp. 325–334. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Gunderson, J.P., Martin, W.N.: Effects of uncertainty on variable autonomy in maintenance robots. In: Workshop on Autonomy Control Software, pp. 26–34 (1999)

    Google Scholar 

  16. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction 1(3), 203–275 (2007)

    Article  MATH  Google Scholar 

  17. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 58(5), 527–535 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances in applied mathematics (Print) 6(1), 4–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47 2(3), 235–256 (2002)

    Article  Google Scholar 

  20. Wang, C., Kulkarni, S., Poor, H.: Bandit problems with side observations. IEEE Transactions on Automatic Control 50(3), 338–355 (2005)

    Article  MathSciNet  Google Scholar 

  21. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. The Journal of Machine Learning Research 3, 397–422 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sofman, B., Ratliff, E.L., Bagnell, J.A., Cole, J., Vandapel, N., Stentz, A.: Improving robot navigation through self-supervised online learning. Journal of Field Robotics 23(1) (December 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sofman, B., Bagnell, J.A., Stentz, A. (2010). Bandit-Based Online Candidate Selection for Adjustable Autonomy. In: Howard, A., Iagnemma, K., Kelly, A. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13408-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13408-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13407-4

  • Online ISBN: 978-3-642-13408-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics