Skip to main content

Asynchronous Deterministic Rendezvous in Bounded Terrains

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6058))

Abstract

Two mobile agents (robots) have to meet in an a priori unknown bounded terrain modeled as a polygon, possibly with polygonal obstacles. Robots are modeled as points, and each of them is equipped with a compass. Compasses of robots may be incoherent. Robots construct their routes, but the actual walk of each robot is decided by the adversary that may, e.g., speed up or slow down the robot. We consider several scenarios, depending on three factors: (1) obstacles in the terrain are present, or not, (2) compasses of both robots agree, or not, (3) robots have or do not have a map of the terrain with their positions marked. The cost of a rendezvous algorithm is the worst-case sum of lengths of the robots’ trajectories until their meeting. For each scenario we design a deterministic rendezvous algorithm and analyze its cost. We also prove lower bounds on the cost of any deterministic rendezvous algorithm in each case. For all scenarios these bounds are tight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. Annual Symposium on Foundations of Computer Science FOCS 1979, pp. 218–223 (1979)

    Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Kluwer Academic Publ., Dordrecht (2002)

    Google Scholar 

  5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  7. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)

    Google Scholar 

  8. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Res. 49, 107–118 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Arkin, E.M., Mitchell, J.S.B., Piatko, C.D.: Bicriteria shortest path problems in the plane. In: Proc. 3rd Canad. Conf. Comput. Geom., pp. 153–156 (1991)

    Google Scholar 

  10. Blum, H.: A transformation for extracting new descriptors of shape. In: Whaten-Dunn, W. (ed.) Proc. Symp. Models for Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  11. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chin, F., Snoeyink, J., Wang, C.A.: Finding the Medial Axis of a Simple Polygon in Linear Time. Discrete Comput. Geom., 382–391 (1995)

    Google Scholar 

  14. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)

    Article  MATH  Google Scholar 

  17. Hershberger, J., Suri, S.: An Optimal Algorithm for Euclidean Shortest Paths in the Plane. SIAM J. Comput. 28, 2215–2256 (1997)

    Article  MathSciNet  Google Scholar 

  18. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390, 27–39 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical Computer Science 399, 141–156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)

    Google Scholar 

  22. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science 384, 222–231 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Preperata, F.P.: The medial axis of a simple polygon. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 443–450. Springer, Heidelberg (1977)

    Google Scholar 

  24. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)

    Google Scholar 

  25. Stachowiak, G.: Asynchronous Deterministic Rendezvous on the Line. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 497–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Google Scholar 

  27. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A. (2010). Asynchronous Deterministic Rendezvous in Bounded Terrains. In: Patt-Shamir, B., Ekim, T. (eds) Structural Information and Communication Complexity. SIROCCO 2010. Lecture Notes in Computer Science, vol 6058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13284-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13284-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13283-4

  • Online ISBN: 978-3-642-13284-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics