Skip to main content

Laser Processing Architecture for Improved Material Processing

  • Chapter
  • First Online:
Laser Processing of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 139))

Abstract

This chapter presents a novel architecture and software–hardware design system for materials processing techniques that are widely applicable to laser direct-write patterning tools. This new laser material processing approach has been crafted by association with the genome and genotype concepts, where predetermined and prescribed laser pulse scripts are synchronously linked with the tool path geometry, and each concatenated pulse sequence is intended to induce a specific material transformation event and thereby express a particular material attribute. While the experimental approach depends on the delivery of discrete amplitude modulated laser pulses to each focused volume element with high fidelity, the architecture is highly versatile and capable of more advanced functionality. The capabilities of this novel architecture fall short of the coherent spatial control techniques that are now emerging, but can be readily applied to fundamental investigations of complex laser-material interaction phenomena, and easily integrated into commercial and industrial laser material processing applications. Section 9.1 provides a brief overview of laser-based machining and materials processing, with particular emphasis on the advantages of controlling energy deposition in light-matter interactions to subtly affect a material’s thermodynamic properties. This section also includes a brief discussion of conventional approaches to photon modulation and process control. Section 9.2 comprehensively describes the development and capabilities of our novel laser genotype pulse modulation technique that facilitates the controlled and precise delivery of photons to a host material during direct-write patterning. This section also reviews the experimental design setup and synchronized photon control scheme, along with performance tests and diagnostic results. Section 9.3 discusses selected applications of the new laser genotype processing technique, including optical property variations and silicate phase fractionation in a commercial photosensitive glass ceramic and pyroelectric phase transitions in a perovskite nanostructured thin-film. Finally, a chapter summary and future perspective are provided in Sect. 9.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Buerle, Laser Processing and Chemistry, 1st edn. (Springer, Heidelberg, 1986)

    Google Scholar 

  2. L.D. Laude, D. Buerle, M. Wautelet (eds.), Interfaces Under Laser Irradiation, NATO ASI, vol. 134 (Martinus Nijhoff, Boston, 1987)

    Google Scholar 

  3. M. von Allmen, A. Blatter (eds.), Laser Beam Interactions with Materials, 1st edn. (Springer, Heidelberg, 1987)

    Google Scholar 

  4. D.J. Ehrlich, J.Y. Tsao (eds.), Laser Microfabrication: Thin Film Processes and Lithography (Academic, London, 1989)

    Google Scholar 

  5. W.M. Steen, Laser Material Processing, vol. 1 (Springer, London, 1991)

    Google Scholar 

  6. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  7. J.C. Miller (ed.), Laser Ablation: Principles and Applications (Springer, Heidelberg, 1994)

    Google Scholar 

  8. L. Migliore (ed.), Laser Materials Processing (Marcel Dekker, New York, 1996)

    Google Scholar 

  9. H.G. Rubahn, Laser Applications in Surface Science and Technology (Wiley, New York, 1999)

    Google Scholar 

  10. J.F. Ready, D.F. Farson (eds.), LIA Handbook of Laser Materials Processing (Magnolia Publications, Orlando, FL, 2001)

    Google Scholar 

  11. A. Pique, R.C.Y. Auyeung, H. Kim, K.M. Metkus, S.A. Mathews, in Proceedings of LPM2008 - 9th International Symposium on Laser Precision Microfabrication, vol. 34 (2008), p. 1

    Google Scholar 

  12. N. Itoh, A.M. Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, UK, 2001)

    Google Scholar 

  13. K.K. Seet, T. Kondo, V. Mizeikis, V. Jarutis, S. Juodkazis, H. Misawa, Proc. SPIE 6161, 616103 (2005)

    Article  Google Scholar 

  14. J.J. Dubowski, S. Tanev (eds.), Photon-based Nanoscience and Nanobiotechnology NATO ASI, vol. 239 (Springer, Heidelberg, 2006)

    Google Scholar 

  15. N. Dahotre, S. Harimkar, Laser Fabrication and Machining of Materials (Springer, Heidelberg, 2008)

    Google Scholar 

  16. R. Murison, B. Reid, R. Boula-Picard, R. Larose, T. Panarello, JLPS (2008)

    Google Scholar 

  17. A. Vogel, J. Noack, G. Huttermann, G. Paltauf, J. Phys. Conf. Ser. 59, 249 (2007)

    Article  ADS  Google Scholar 

  18. A. Vogel, J. Noack, G. Huttman, G. Paltauf, Appl. Phys. B 81, 1015 (2005)

    Article  ADS  Google Scholar 

  19. S.Y. Chou, Q. Xia, Nat. Nanotechnol. 3(5), 295 (2008)

    Article  Google Scholar 

  20. W. Hoving, Proc. SPIE 3097, 248 (1997)

    Google Scholar 

  21. E. Louzon, Z. Henis, S. Pecker, Y. Ehrlich, D. Fisher, M. Fraenkel, App. Phys. Lett. 87, 241903 (2005)

    Article  ADS  Google Scholar 

  22. R.J. Levis, G.M. Menkir, H. Rabitz, Science 292(5517), 709 (2001)

    Article  ADS  Google Scholar 

  23. F.E. Livingston, L.F. Steffeney, H. Helvajian, Appl. Surface Sci. 253, 8015 (2007)

    Article  ADS  Google Scholar 

  24. S.M. Pimenov, G.A. Shafeev, A.A. Smolin, V.I. Konov, B.K. Vodolaga, Appl. Surface Sci. 86(1–4), 208 (1995)

    Article  ADS  Google Scholar 

  25. C. Ristoscu, G. Socol, C. Ghica, I.N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Appl. Surface Sci. 252(13), 4857 (2006)

    Article  ADS  Google Scholar 

  26. J. Solis, C.N. Afonso, J.F. Trull, M.C. Morilla, J. Appl. Phys. 75(12), 7788 (1994)

    Article  ADS  Google Scholar 

  27. B. Tan, K. Venkatakrishnan, K.G. Tok, Appl. Surface Sci. 207(1–4), 365 (2003)

    Article  ADS  Google Scholar 

  28. V.P. Veiko, G.K. Kostyuk, N.V. Nikonorov, A.N. Rachinskaya, E.B. Yakovlev, D.V. Orlov, Proc. SPIE 6606, 66060Q (2007)

    Article  ADS  Google Scholar 

  29. T. Feurer, J.C. Vaughan, R.M. Koehl, K.A. Nelson, Optics Lett. 27(8), 652 (2002)

    Article  ADS  Google Scholar 

  30. F.E. Livingston, H. Helvajian, Genotype Pulse Modulation Laser Writing System, U.S. Patent No. 7,526,357, issued April 28, 2009

    Google Scholar 

  31. F.E. Livingston, H. Helvajian, Special Issue MRS Bull. Direct Write Technol. 32, 40 (2007)

    Google Scholar 

  32. F.E. Livingston, L.F. Steffeney, H. Helvajian, Appl. Phys. A 93(1), 75 (2008)

    Article  ADS  Google Scholar 

  33. A.M. Stoneham, Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (Clarendon, Oxford, 1975)

    Google Scholar 

  34. E. Lilley, in Proceedings of the 6th International Symposium on Reactivity of Solids, ed. by J.W. Mitchell, R.C.D. Vries, R.W. Roberts, P. Cannon (Wiley-Interscience, 1969), p. 631

    Google Scholar 

  35. J. Corish, P.M. Jacobs, in Surface and Defect Properties of Solids (The Chemical Society, London, 1973), pp. 160–228

    Google Scholar 

  36. R.W. Joyner, B.A. Somorjai, in Surface and Defect Properties of Solids, A Specialist Periodical Report, vol. 2 (The Chemical Society, London, 1973), pp. 1–33

    Google Scholar 

  37. S. Preuss, H.C. Langowski, T. Damm, M. Stuke, Appl. Phys. A 65(4), 360 (1992)

    Article  ADS  Google Scholar 

  38. T. Brixner, T. Pfeifer, G. Gerber, M. Wollenhaupt, T. Baumert, in Femtosecond Laser Spectroscopy, vol. Progress in Lasers, ed. by P. Hannaford (Kluwer, Dordecht, 2004), pp. 229–271

    Google Scholar 

  39. A. Prakelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, T. Baumert, Rev. Sci. Inst. 74(11), 4950 (2003)

    Article  ADS  Google Scholar 

  40. M. Wollenhaupt, V. Engel, T. Baumert, Annu. Rev. Phys. Chem. 56, 25 (2005)

    Article  ADS  Google Scholar 

  41. R. Bayer, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Phys. Rev. Lett. 102, 023004 (2009)

    Article  ADS  Google Scholar 

  42. F.E. Livingston, H. Helvajian, SPIE Proc., 6th Int. Symp. Laser Precision Microfabric. 1, 329 (2005)

    Google Scholar 

  43. F.E. Livingston, H. Helvajian, J. Photochem. Photobiol. A 182, 310 (2006)

    Article  Google Scholar 

  44. F.E. Livingston, H. Helvajian, Proc. NATO Adv. Sci. Inst. Photon Based Nanosci. Nanobiotechnol. 239, 225 (2006)

    Article  Google Scholar 

  45. R.L. Jungerman, C. Johnsen, D.J. Mcquate, K. Salomaa, M.P. Zurakowski, R.C. Bray, G. Conrad, D. Cropper, P. Hernday, J. Lightwave Technol. 8(9), 1363 (1990)

    Article  ADS  Google Scholar 

  46. R. Fluck, B. Braun, E. Gini, H. Melchior, U. Keller, Optics Lett. 22(13), 991 (1997)

    Article  ADS  Google Scholar 

  47. P.R. Herman, A. Oettle, K.P. Chen, R.S. Marjoribanks, Proc. SPIE 3616, 148 (1999)

    Article  ADS  Google Scholar 

  48. E. Wilson, T. Eisner, W. Briggs, R. Dickerson, R. Metzenberg, R. O’Brien, M. Susman, W. Boggs, Life on Earth (Sinauer Association, Stamford, 1973)

    Google Scholar 

  49. F.E Livingston, W.L. Sarney, K. Niesz, T. Ould-Ely, A.R. Tao, D.E. Morse, Proc. SPIE Bio-Inspired/Biomimetic Sensor Technol. Appl. 7321, 732101 (2009)

    Google Scholar 

  50. W.L. Sarney, J.W. Little, A.R Tao, D.E. Morse, F.E. Livingston, Proc. 26th Army Science Conf. MP-16, 1 (2009)

    Google Scholar 

  51. F.E. Livingston, unpublished results (2009)

    Google Scholar 

  52. F.E Livingston, P.M. Adams, H. Helvajian, Appl. Phys. A 89, 97 (2007)

    Google Scholar 

  53. F.E. Livingston, H. Helvajian, Appl. Phys. A 81, 1569 (2005)

    Article  ADS  Google Scholar 

  54. F.E. Livingston, P. Adams, H. Helvajian, SPIE Proc. Laser Precision Microfabrication 5662, 44 (2004)

    ADS  Google Scholar 

  55. F.E. Livingston, P. Adams, H. Helvajian, Appl. Surf. Sci. 247, 526 (2005)

    Article  ADS  Google Scholar 

  56. F.E. Livingston, H. Helvajian, in Three-Dimensional Laser Microfabrication: Principles and Applications, ed. by H. Misawa, S. Juodkazis (Wiley, Weinheim, Germany, 2006), pp. 287–339

    Google Scholar 

  57. P.D. Fuqua, D.P. Taylor, H. Helvajian, W.W. Hansen, M.H. Abraham, Mat. Res. Soc. Symp. Proc. 624, 79 (2000)

    Google Scholar 

  58. W.W. Hansen, S.W. Janson, H. Helvajian, in Laser Applications in Microelectronic and Optoelectronic Manufacturing II, vol. 2991 (SPIE, Bellingham, WA, 1997), vol. 2991, pp. 104–112

    Google Scholar 

  59. F.E. Livingston, H. Helvajian, SPIE Proc. Laser Adv. Mater. Proces. 4830, 189 (2003)

    ADS  Google Scholar 

  60. S.W. Janson, A. Huang, W.W. Hansen, H. Helvajian, AIAA 6701, 1 (2004)

    Google Scholar 

  61. J.F. Belcher, C.M. Hasnon, H.R. Beratan, K.R. Udayakumar, K.L. Soch, SPIE Proc. Infrared Technol. Appl. 3436, 611 (1998)

    Article  ADS  Google Scholar 

  62. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2(4), 257 (1998)

    Article  Google Scholar 

  63. R.L. Brutchey, D.E. Morse, Agnew. Chem. Int. Ed. 6564, 45 (2006)

    Google Scholar 

  64. R.L. Brutchey, E. Yoo, D. Morse, J. Am. Chem. Soc. 128, 10288 (2006)

    Article  Google Scholar 

  65. R.W. Whatmore, J. Electroceram. 13, 139 (2004)

    Article  Google Scholar 

  66. B.D. Begg, K.S. Finnie, E.R. Vance, J. Am. Ceram. Soc. 79, 2666 (1996)

    Article  Google Scholar 

  67. T. Hoshina, H. Kakemoto, T. Tsurumi, M. Yashima, Y. Kuroiwa, S. Wada, Key Engineer. Mater. 320, 131 (2006)

    Article  Google Scholar 

  68. U.Y. Hwang, H.S. Park, K.K. Koo, J. Am. Ceram. Soc. 87, 2168 (2004)

    Article  Google Scholar 

  69. H. Ikawa, T. Nakai, S. Higuchi, K. Saitoh, M. Takemoto, Trans. Mater. Res. Soc. Jpn. 13, 101 (2006)

    Google Scholar 

  70. S.W. Lu, B.I. Lee, Z.L. Wang, W.D. Samuels, J. Cryst. Growth 219, 269 (2000)

    Article  Google Scholar 

  71. M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955 (2008)

    Article  Google Scholar 

  72. M.-S. Zhang, Z. Yin, Q. Chen, W. Zhang, W. Chen, Solid St. Commun. 119, 659 (2001)

    Article  ADS  Google Scholar 

  73. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)

    Google Scholar 

  74. R.R. Letfullin, T.F. George, G.C. Duree, B.M. Bollinger, Adv. Opt. Technol. ID 251718 (2008)

    Google Scholar 

  75. F.E. Livingston, Laser-BaTiO3 nanoparticle interactions: One-temperature model approach, unpublished results (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Livingston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Livingston, F.E., Helvajian, H. (2010). Laser Processing Architecture for Improved Material Processing. In: Schaaf, P. (eds) Laser Processing of Materials. Springer Series in Materials Science, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13281-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13281-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13280-3

  • Online ISBN: 978-3-642-13281-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics