Advertisement

The In-Situ Study of Solid Particles in the Solar System

  • I. MannEmail author
  • E.K. Jessberger
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 815)

Abstract

In-situ measurements of dust from spacecraft can in principle provide information about dust properties at any given place in the solar system and under conditions that are not reproducible on Earth. Already relatively simple in-situ measurements provide information about the properties of dust particles. Measurements of interplanetary dust have shown for the first time the fluffy and porous structure of interplanetary dust as well as the existence of two dust components with distinctly different properties. Experiments during the missions to comet Halley have shown the cometary dust to consist of two major components to about the same amount: a component that is rich in rock-forming elements and a component that is rich in the elements H, C, N and O. The latter component is assumed to consist of refractory organic material. Although the composition of interstellar dust particles is not directly measured yet, their conditions of entry into the solar system reveal the forces that are acting on them. The forces depend on the properties of dust and allow for a comparison to astrophysical models of dust size, composition and structure. In-situ measurements with improved dust detectors are presently carried out and planned for future missions. The scientific return of these future measurements can be greatly enhanced by combining detailed laboratory studies of the physics and functional principles of the detectors.

Keywords

Solar System Dust Particle Interstellar Dust Interplanetary Dust Local Interstellar Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work has been supportet by the German Aerospace Center DLR (Deutsches Zentrum für Luft- und Raumfahrt) under project (RD-RX /50QP 0403).

Referneces

  1. 1.
    Mann, I.: Meteors. In: Trümper, J. (ed.) Landolt-Börnstein New Series VI/2a. Springer, Berlin (2009)Google Scholar
  2. 2.
    Grün, E., Zook, H.A., Fechtig, H., Giese, R.H.: Collisional balance of the meteoritic complex. Icarus 62, 244 (1985)CrossRefGoogle Scholar
  3. 3.
    Ceplecha, Z.K., Borovicka, J.I., Elford, W.G., et al.: Meteor phenomena and bodies. Space Sci. Rev. 84(3/4), 327 (1998)CrossRefGoogle Scholar
  4. 4.
    Maurette, M., Olinger, C., Michel-Levy, M.C., et al.: A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351, 44 (1991)CrossRefGoogle Scholar
  5. 5.
    Pellinen-Wannberg, A., Westman, A., Wannberg, G., Kaila, K.: Meteor fluxes and visual magnitudes from EISCAT radar event rates: a comparison with cross section based magnitude estimates and optical data. Ann. Geophys. 16, 1475 (1998)CrossRefGoogle Scholar
  6. 6.
    Mann, I.: Zodiacal cloud complexes. Earth Planet. Space 50(6,7), 465 (1998)Google Scholar
  7. 7.
    Tuzzolino, A.J., McKibben, R.B., Simpson, J.A., et al.: The space dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft: I-instrument description. Planet. Space Sci. 49(7), 689 (2001a)CrossRefGoogle Scholar
  8. 8.
    Auer, S.: Instrumentation. In: Grün, E., Gustafson, B.A.S., Dermott, S., Fechtig, H. (eds.) Interplanetary Dust, pp. 385–444. Astron. Astrophys. Library, Springer, Berlin, New York, (2001)CrossRefGoogle Scholar
  9. 9.
    Arndt, P., Bohsung, J., Maetz, M., Jessberger, E.K.: The element abundances in interplanetary dust particles. Meteoritics 31, 817 (1996)CrossRefGoogle Scholar
  10. 10.
    Jessberger, E.K., Stephan, T., Rost, D., et al.: Properties of interplanetary dust: Information from collected samples. In: Grün, E., Gustafson, B.A.S., Dermott, S., Fechtig, H. (eds.) Interplanetary Dust. Springer, Berlin, New York (2001)Google Scholar
  11. 11.
    McDonnell, J.A.M.: Microparticle studies by space instrumentation. In: McDonnell, J.A.M. (ed.) Cosmic Dust, pp. 337–419. Wiley-Interscience, Chichester, Sussex, England, New York (1978)Google Scholar
  12. 12.
    Humes, D.H.: Results of Pioneer 10 and 11 meteoroid experiments - Interplanetary and near-Saturn. J. Geophys. Res. 85, 5841 (1980)CrossRefGoogle Scholar
  13. 13.
    Simpson, J.A., Tuzzolino, A.J.: Polarized polymer films as electronic pulse detectors of cosmic dust particles. Nucl. Instrum. Methods Phys. Res. A236, 187 (1985)Google Scholar
  14. 14.
    Srama, R., Grün, E.: The dust sensor for CASSINI. Adv. Space Res. 20(8), 1467 (1997)CrossRefGoogle Scholar
  15. 15.
    Srama, R., Ahrens, T.J., Altobelli, N., et al.: The Cassini cosmic dust analyzer. Space Sci. Rev. 114(1–4), 465–518 (2004)CrossRefGoogle Scholar
  16. 16.
    Giese, R.H., Schwehm, G.H., Zerull, R.M.: A concept for analysis of cometary dust by light scattering experiments on future cometary probes. In: Space research XIX, Proceedings of the Open Meetings of the Working Groups on Physical Sciences, Innsbruck 1978, pp. 475–478. Pergamon Press, Oxford (1979)Google Scholar
  17. 17.
    Levasseur-Regourd, A.C., Schuerman, D.W., Zerull, R.H., Giese, R.H.: Cometary dust observations by optical in-situ methods. Adv. Space Res. 1(8), 113 (1981)CrossRefGoogle Scholar
  18. 18.
    Levasseur-Regourd, A.C., Bertaux, J.L., Dumont, R., et al.: Optical probing of comet Halley from the Giotto spacecraft. Nature 321 (1986)Google Scholar
  19. 19.
    Colangeli, L., Lopez-Moreno, J.J., Palumbo, P., et al.: The Grain impact analyser and dust accumulator (GIADA) experiment for the Rosetta mission: design, performances and first results. Space Sci. Rev. 128, 803 (2007)CrossRefGoogle Scholar
  20. 20.
    Tuzzolino, A.J., McKibben, R.B., Simpson, J.A., et al.: The space dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft: II-results from the first 16 months of flight. Planet. Space Sci. 49(7), 705 (2001b)CrossRefGoogle Scholar
  21. 21.
    McDonnell, J.A.M., Burchell, M.J., Green, S.F., et al.: APSIS - Aerogel position-sensitive impact sensor: capabilities for in-situ collection and sample return. Adv. Space Res. 25(2), 315 (1999)CrossRefGoogle Scholar
  22. 22.
    Aubier, M.G., Meyer-Vernet, N., Pedersen, B.M.: Shot noise from grain and particle impacts in Saturn’s ring plane. Geophys. Res. Lett. 10, 5 (1983)CrossRefGoogle Scholar
  23. 23.
    Meyer-Vernet, N., Aubier, M.G., Pedersen, B.M.: Voyager 2 at Uranus - Grain impacts in the ring plane. Geophys. Res. Lett. 13, 617 (1986a)CrossRefGoogle Scholar
  24. 24.
    Meyer-Vernet, N., Couturier, P., Hoang, S., et al.: Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner. Science 232, 370 (1986b)CrossRefGoogle Scholar
  25. 25.
    Tsintikidis, D., Gurnett, D., Granroth, L.J., Allendorf, S.C., Kurth, W.S.: A revised analysis of micron-sized particles detected near Saturn by the Voyager 2 plasma wave instrument. J. Geophys. Res. 99(A2), 2261 (1994)CrossRefGoogle Scholar
  26. 26.
    Neubauer, F.M., Glassmeier, K.-H., Coates, A.J., Goldstein, R., Acuna, M.H.: Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments. Geophys. Res. Lett. 17, 1809 (1990)CrossRefGoogle Scholar
  27. 27.
    Gurnett, D.A., Ansher, J.A., Kurth, W.S., Granroth, L.J.: Micron-sized dust particles detected in the outer solar system by Voyager 1 and 2 plasma wave instruments. Geophys. Res. Lett. 24(24), 3125 (1997)CrossRefGoogle Scholar
  28. 28.
    Giese, R.H., Weiss, K., Zerull, R.H., Ono, T.: Large fluffy particles - A possible explanation of the optical properties of interplanetary dust. Astron. Astrophys. 65, 265 (1978)Google Scholar
  29. 29.
    Fraundorf, P., Patel, R.I., Freeman, J.J.: Infrared spectroscopy of interplanetary dust in the laboratory. Icarus 47, 368 (1981)CrossRefGoogle Scholar
  30. 30.
    Fraundorf, P., Walker, R.M., Brownlee, D.E.: Laboratory studies of interplanetary dust. In: Wilkening, H. (ed.) Comets, pp. 383–409. University of Arizona Press, Tuscon (1982)Google Scholar
  31. 31.
    Fechtig, H.: Cometary dust in the solar system. In: Wilkening, H. (ed.) Comets, pp. 370–382. University of Arizona Press, Tuscon, AZ (1982)Google Scholar
  32. 32.
    Hillier, J.K., Green, S.F., McBride, N., et al.: Interplanetary dust detected by the Cassini CDA Chemical Analyser. Icarus 190, 643–654 (2007)CrossRefGoogle Scholar
  33. 33.
    McComas, D.J., Velli, M., Lewis, W.S., et al.: Understanding coronal heating and solar wind acceleration: the case for in-situ near-Sun measurements. Rev. Geophys. 45, RG1004 (2007)CrossRefGoogle Scholar
  34. 34.
    Mann, I., Kimura, H., Biesecker, D.A., et al.: Dust near the Sun. Space Sci. Rev. 110, 269 (2004)CrossRefGoogle Scholar
  35. 35.
    Mann, I., Murad, E.: On the existence of silicon nano-dust near the Sun. Astrophys. J. 624, L125 (2005)CrossRefGoogle Scholar
  36. 36.
    Ishiguro, M., Watanabe, J., Usui, F., et al.: First detection of an optical dust trail along the orbit of 22P/Kopff. Astrophys. J. 572(1), L117–L120 (2002)CrossRefGoogle Scholar
  37. 37.
    Glöckler, G., Geiss, J.: Interstellar and inner source pickup ions observed with SWICS on ULYSSES. Space Sci. Rev. 86(1/4), 127 (1998)CrossRefGoogle Scholar
  38. 38.
    Mann, I., Czechowski, A.: Dust destruction and ion formation in the inner solar system. Astrophys. J. 621, L73 (2005)CrossRefGoogle Scholar
  39. 39.
    McDonnell, J.A.M., Alexander, W.M., Burton, W.M., et al.: Dust density and mass distribution near comet Halley from Giotto observations. Nature, 321, 338 (1986)CrossRefGoogle Scholar
  40. 40.
    Simpson, J.A., Sagdeev, R.Z., Tuzzolino, A.J., et al.: Dust counter and mass analyser (DUCMA) measurements of comet Halley’s coma from VEGA spacecraft. Nature 321, 278 (1986)CrossRefGoogle Scholar
  41. 41.
    Simpson, J.A., Rabinowitz, D., Tuzzolino, A.J., Ksanfomaliti, L.V., Sagdeev, R.Z.: The dust coma of comet P/Halley - Measurements on the Vega-1 and Vega-2 spacecraft. Astron. Astrophys. 187(1–2), 742 (1987)Google Scholar
  42. 42.
    Utterback, N.G., Kissel, J.: Attogram dust cloud a million kilometers from Comet Halley. Astron. J. 100, 1315 (1990)CrossRefGoogle Scholar
  43. 43.
    Kissel, J., Brownlee, D.E., Buchler, K., et al.: Composition of comet Halley dust particles from Giotto observations. Nature 321, 336 (1986a)CrossRefGoogle Scholar
  44. 44.
    Kissel, J., Sagdeev, R.Z., Bertaux, J.L., et al.: Composition of comet Halley dust particles from VEGA observations. Nature 321, 280 (1986b)CrossRefGoogle Scholar
  45. 45.
    Jessberger, E.K., Christoforidis, A., Kissel, J.: Aspects of the major element composition of Halley’s dust. Nature 332, 691 (1988)CrossRefGoogle Scholar
  46. 46.
    Tuzzolino, A.J., Economou, T.E., Clarket, B.C., et al.: Dust measurements in the coma of Comet 81P/Wild 2 by the Dust Flux Monitor Instrument. Science 304, 17760 (2004)CrossRefGoogle Scholar
  47. 47.
    Green, S.F., McDonnell, J.A.M., McBride, N., et al.: The dust mass distribution of comet 81P/Wild 2. J. Geophys. Res. 109(E12), CiteID7 E12S04 (2004)CrossRefGoogle Scholar
  48. 48.
    Tsou, P., Brownlee, D.E., Anderson, J.D., et al.: Stardust encounters comet 81P/Wild 2. J. Geophys. Res. 109 (2004)Google Scholar
  49. 49.
    Jessberger, E.K.: On the element, isotopic and mineralogical ingredients of ROCKY cometary particulates. In: Altwegg, K., Ehrenfreund, P., Geiss, J., Huebner, W. (eds.) The Origin and Composition of Cometary Materials. Space Sci. Series of ISSI. Kluwer, Dordrecht. Space Sci. Rev. 90, 91 (1999)CrossRefGoogle Scholar
  50. 50.
    Lawler, M.E., Brownlee, D.E.: CHON as a component of dust from Comet Halley. Nature 359, 6398 (1992)CrossRefGoogle Scholar
  51. 51.
    Grevesse, N., Sauval, A.J.: Standard solar composition. Space Sci. Rev. 85(1/2), 161 (1998)CrossRefGoogle Scholar
  52. 52.
    Holweger, H.: Photospheric abundances: problems, updates, implications. In: Wimmer-Schweingruber, R.F. (ed.) Joint SOHO/ACE Workshop 2001. American Institute of Physics Press, New York, NY. AIP Conf. Proc. 598, 23 (2001)Google Scholar
  53. 53.
    Kimura, H., Mann, I., Jessberger, E.K.: Elemental abundances and mass densities of dust and gas in the local interstellar cloud. Astrophys. J. 582, 846 (2003a)CrossRefGoogle Scholar
  54. 54.
    Allende Prieto, C., Lambert, D.L., Asplund, M.: A reappraisal of the solar photospheric C/O ratio. Astrophys. J. 573, L137 (2002)CrossRefGoogle Scholar
  55. 55.
    Schulze, H., Kissel, J., Jessberger, E.K.: Chemistry and mineralogy of Comet Halley’s dust. From Stardust to Planetesimals. Symposium held as part of the 108th Annual meeting of the ASP held at Santa Clara, California 24–26 June 1996. In: Pendleton, Y.J., Tielens, A.G.G.M. (with the editorial assistance of Savage, M.L.) (eds.) ASP Conference Series, vol. 122, pp. 397–414. ASP, San Francisco, CA (1997)Google Scholar
  56. 56.
    Jessberger, E.K., Kissel, J.: Chemical properties of cometary dust and a note on carbon isotopes. In: Newburn, R., Neugebauer, M., Rahe, J., (eds.) Comets in the Post-Halley Era, pp. 1075–1092. Springer, Heidelberg (1991)Google Scholar
  57. 57.
    Amari, S., Anders, E., Virag, A., Zinner, E.: Interstellar graphite in meteorites. Nature 345, 238 (1990)CrossRefGoogle Scholar
  58. 58.
    Zinner, E.: Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Annu. Rev. Earth Planet. Sci. 26, 147 (1998)CrossRefGoogle Scholar
  59. 59.
    Riedler, W., Torkar, K., Jeszenszky, H., et al.: MIDAS the micro-imaging dust analysis system for the Rosetta mission. Space Sci. Rev. 128, 869 (2007)CrossRefGoogle Scholar
  60. 60.
    Kissel, J., Altwegg, K., Clark, B.C., et al.: Cosima high resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard Rosetta. Space Sci. Rev. 128, 823 (2007)CrossRefGoogle Scholar
  61. 61.
    Bertaux, J.L., Blamont, J.E.: Possible evidence for penetration of interstellar dust into the solar system. Nature 262, 263 (1976)CrossRefGoogle Scholar
  62. 62.
    Grün, E., Gustafson, B., Mann, I., et al.: Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915 (1994)Google Scholar
  63. 63.
    Mann, I., Kimura, H.: Interstellar dust properties derived from mass density, mass distribution, and flux rates in the heliosphere. J. Geophys. Res. 105, 10317 (2000)CrossRefGoogle Scholar
  64. 64.
    Witte, M., Rosenbauer, H., Banaszkiewicz, M., Fahr, H.: The ULYSSES neutral gas experiment – Determination of the velocity and temperature of the interstellar neutral helium. Adv. Space Res. 13(6), 121 (1993)CrossRefGoogle Scholar
  65. 65.
    Krüger, H., Grün, E., Landgraf, M., et al.: Four years of Ulysses dust data: 1996–1999. Planet. Space Sci. 49(13), 1303 (2001)CrossRefGoogle Scholar
  66. 66.
    Grün, E., Baguhl, M., Divine, N., et al.: Two years of Ulysses data. Planet. Space Sci. 43, 971 (1995)CrossRefGoogle Scholar
  67. 67.
    Krüger, H., Grün, E., Heck, A., Lammers, S.: Analysis of the sensor characteristics of the Galileo dust detector with collimated Jovian dust stream particles. Planet Space Sci. 47, 1015 (1999)CrossRefGoogle Scholar
  68. 68.
    Czechowski, A., Mann, I.: Penetration of interstellar dust grains into the heliosphere. J. Geophys. Res. 108(A10), CiteID 8038 (2003)CrossRefGoogle Scholar
  69. 69.
    Landgraf, M.: Modeling the motion and distribution of interstellar dust inside the heliosphere. J. Geophys. Res. 105, 10303 (2000)CrossRefGoogle Scholar
  70. 70.
    Mathis, J.S., Rumpl, W., Nordsieck, K.H.: The size distribution of interstellar grains. Astrophys. J. 217, 425 (1977)CrossRefGoogle Scholar
  71. 71.
    Draine, B.T., Lee, H.M.: Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89 (1984)CrossRefGoogle Scholar
  72. 72.
    Mathis, J.S.: Dust models with tight abundance constraints. Astrophys. J. 472, 643 (1996)CrossRefGoogle Scholar
  73. 73.
    Li, A., Greenberg, J.M.: A unified model of interstellar dust. Astron. Astrophys. 323 566 (1997)Google Scholar
  74. 74.
    Landgraf, M., Baggaley, W.J., Grün, E., Krüger, H., Linkert, G.: Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J. Geophys. Res. 105, 10343 (2000)CrossRefGoogle Scholar
  75. 75.
    Kimura, H., Mann, I., Jessberger, E.K.: Composition, structure and size distribution of dust in the local interstellar cloud. Astrophys. J. 583, 314 (2003b)CrossRefGoogle Scholar
  76. 76.
    Brownlee, D.E., Burnett, D., Clark, B., et al.: STARDUST: Comet and interstellar dust sample return mission. In: Gustafson, B.A.S., Hanner, M.S. (eds.) Physics, Chemistry, and Dynamics of Interplanetary Dust. Astronomical Society of the Pacific Conference Series, pp. 223–225. ASP, San Francisco, CA (1996)Google Scholar
  77. 77.
    Grün, E., Landgraf, M., Hor’anyi, M., et al.: Techniques for galactic dust measurements in the heliosphere. J. Geophys. Res. 105, 10403 (2000)CrossRefGoogle Scholar
  78. 78.
    Liewer, P.C., Mewaldt, R.A., Ayon, J.A., Wallace, R.A.: NASA’s interstellar probe mission. In: El-Genk (ed.) Space Technology and Applications International Forum 2000. American Institute of Physics Press, New York, NY. AIP Conf. Proc. 504, 911 (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Science and EngineeringKindai UniversityHigashi-OsakaJapan
  2. 2.Institut für PlanetologieWestfälische Wilhelms-Universität, MünsterMünsterGermany

Personalised recommendations