Advertisement

The Mineralogy of Cometary Dust

  • M.S. HannerEmail author
  • M.E. Zolensky
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 815)

Abstract

Cometary dust is a heterogeneous mixture of unequilibrated olivine and pyroxenes, amorphous silicates, Fe-Ni sulfides, and minor amounts of oxides and other minerals. While forsterite Mg2SiO4 and enstatite MgSiO3 are the most common silicate minerals, both the olivine and pyroxenes also show a wide range in Mg/Fe in at least some comets. Carbon in the dust is enriched relative to CI chondrites; a significant fraction of the carbon is in the form of organic refractory material. The return of the particulate sample from ecliptic comet 81P/Wild 2 has opened up a new window for revealing the dust mineralogy at a level of detail not previously possible. The most interesting result from the Wild 2 sample to date is the discovery of refractory calcium aluminum-rich inclusions (CAI) similar to those found in primitive meteorites; chondrule fragments are also present.

Comets formed in the outer parts of the solar nebula where temperatures remained low enough so that interstellar grains could have survived. The small glassy silicates in comets may indeed be interstellar grains. The CAI and the widespread, abundant crystalline silicates must have condensed in the hot inner solar nebula; their presence in comets is evidence for strong radial mixing in the solar nebula. The preponderance of Mg-rich silicates has a natural explanation in the condensation sequence; they are the first to condense in a hot gas and only react with iron at lower temperatures.

This review discusses the mineralogy of cometary dust determined from infrared spectroscopy, in situ Halley measurements, IDPs, and the captured particles from comet Wild 2.

Keywords

Silica Aerogel Solar Nebula Comet Nucleus Carbonaceous Chondrite Kuiper Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

M.Z. acknowledges support from the NASA Stardust Data Analysis Program.

Referneces

  1. 1.
    Dones, L., Weissman, P.R., Levison, H.F., Duncan, M.J.: Oort cloud formation and dynamics. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 153–174. University of Arizona Press, Tucson, AZ (2004)Google Scholar
  2. 2.
    Morbidelli, A., Brown, M.E.: The Kuiper belt and the primordial evolution of the solar system. In: Festou, M., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 175–191. University of Arizona Press, Tucson, AZ (2004)Google Scholar
  3. 3.
    Duncan, M.J., Levison, H.F.: A disk of scattered icy objects and the origin of Jupiter family omets. Science 276, 1670–1672 (1997)Google Scholar
  4. 4.
    Duncan, M., Levison, H.F., Dones, L.: Dynamical evolution of ecliptic comets. In: Festou, M., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 193–204. University of Arizona Press, Tucson, AZ (2004)Google Scholar
  5. 5.
    Volk, K., Malhotra, R.: Reassessing the classical Kuiper belt as a source of the Jupiter family comets. Bull. Am. Astron. Soc. 40, 481 (2008)Google Scholar
  6. 6.
    Charnoz, S., Morbidelli, A.: Coupling 2dynamical and collisional evolution of small bodies II. Forming the Kuiper belt, the scattered disk and the Oort cloud. Icarus 188, 468–480 (2007)Google Scholar
  7. 7.
    Gomes, R.S.: The origin of the Kuiper belt high-inclination population. Icarus 161, 404–418 (2003)Google Scholar
  8. 8.
    Levison, H.F., Morbidelli, A.: The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration. Nature 426 419–421 (2003)Google Scholar
  9. 9.
    Whipple, F.L.: A comet model: I. The acceleration of comet Encke. Astrophys. J. 111, 375–394 (1950)Google Scholar
  10. 10.
    Weaver, H.A., Lamy, P.L.: Estimating the size of Hale-Bopp’s nucleus. Earth Moon Planets 79, 17–33 (1999)Google Scholar
  11. 11.
    Sekanina, Z.: Secondary fragmentation of the Solar and Heliospheric Observatory sungrazing comets at very large heliocentric distances. Astrophys. J. Lett. 542, L147–L150 (2000)Google Scholar
  12. 12.
    Sekanina, Z., Hanner, M.S., Jessberger, E.K., Fomenkova, M.N.: Cometary dust. In: Grün, E., Gustafson, B.A.S., Dermott, S., Fechtig, H. (eds.) Interplanetary Dust. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Keller, H.U., Delamare, W.A., Huebner, W.F., et al.: Comet P/Halley’s nucleus and its activity. Astron. Astrophys. 187, 807–823 (1987)Google Scholar
  14. 14.
    Soderblom, L.A., Boice, D.C., Britt, D.T., Brown, R.H., Buratti, B.J., Hicks, M.D., et al.: Observations of comet 19P/Borrelly from the miniature integrated camera and spectrometer (MICAS) aboard deep space 1 (DS1). Bull. Am. Astron. Soc. 33, 1087 (2001)Google Scholar
  15. 15.
    Brownlee, D.E., Horz, F., Newburn, R.L., Zolensky, M., Duxbury, T.C., Sandford, S., et al.: Surface of young Jupiter family comet 81P/Wild 2: view from the Stardust spacecraft. Science 304, 1764–1769 (2004)Google Scholar
  16. 16.
    A’Hearn, M.F.,et al.: Deep impact: excavating comet tempel 1. Science 310, 258–264 (2005)Google Scholar
  17. 17.
    Crovisier, J., Bockelee-Morvan, D.: Remote observations of cometary volatiles. Space Sci. Rev. 90, 19–32 (1999)Google Scholar
  18. 18.
    Irvine, W.M., Schloerb, F.P., Crovisier, J., Fegley, B., Mumma, M.J.: Comets: a link between interstellar and nebular chemistry. In: Mannings, V., Boss, A.P., Russell, S.S., (eds.) Protostars and Planets IV, pp. 1159–1200. University of Arizona Press, Tucson, AZ (2000)Google Scholar
  19. 19.
    Bockelee-Morvan, D., Crovisier, J., Mumma, M.J., Weaver, H.A.: The composition of cometary volatiles. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 391–423. University of Arizona Press, Tucson, AZ (2004)Google Scholar
  20. 20.
    McDonnell, J.A.M., Lamy, P.L., Pankiewicz, G.S.: Physical properties of cometary dust. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds.) Comets in the Post Halley Era, pp. 1043–1073. Kluwer, Dordrecht (1991)Google Scholar
  21. 21.
    Sykes, M.V., Walker, R.G.: Cometary dust trails. Icarus 95, 180–210 (1992)Google Scholar
  22. 22.
    Reach, W.T., Sykes, M.V., Lien, D., Davies, J.K.: The formation of Encke meteoroids and dust trail. Icarus 148, 80–94 (2000)Google Scholar
  23. 23.
    Campins, H., Ryan, E.: The identification of crystalline olivine in cometary silicates. Astrophys. J. 341, 1059–1066 (1989)Google Scholar
  24. 24.
    Stephens, J.R., Russell, R.W.: Emission and extinction of ground and vapor-condensed silicates from 4 to 14 microns and the 10 micron silicate feature. Astrophys. J. 228, 780–786 (1979)Google Scholar
  25. 25.
    Bregman, J.H., Campins, H., Witteborn, F.C., Wooden, D.H., Rank, D.M., Allamandola, L.J., Cohen, M., Tielens, A.G.G.M.: Airborne and groundbased spectrophotometry of comet P/Halley from \(5\hbox{-}13\,\upmu\mathrm{m}\). Astron. Astrophys. 187, 616–620 (1987)Google Scholar
  26. 26.
    Davies, J.K., Geballe, T.R., Hanner, M.S., Weaver, H.A., Crovisier, J., Bockelee-Morvan, D.: Thermal infrared spectra of comet Hale-Bopp at heliocentric distances of 4 and 2.9 AU. Earth Moon Planets 78, 293–298 (1999)Google Scholar
  27. 27.
    Hanner, M.S., Gehrz, R.D., Harker, D.E., Hayward, T.L., Lynch, D.K., Mason, C.C., Russell, R.W., Williams, D.M., Wooden, D.H., Woodward, C.E.: Thermal emission from the dust coma of comet Hale-Bopp and the composition of the silicate grains. Earth Moon Planets 79, 247–264 (1999)Google Scholar
  28. 28.
    Hayward, T.L., Hanner, M.S., Sekanina, Z.: Thermal infrared imaging and spectroscopy of comet Hale-Bopp (C/1995 O1). Astrophys. J. 538, 428–455 (2000)Google Scholar
  29. 29.
    Wooden, D.H., Harker, D.E., Woodward, C.E., Butner, H., Koike, C., Witteborn, F.C., McMurty, C.W.: Silicate mineralogy of the dust in the inner coma of comet C/1995 O1 (Hale-Bopp) pre- and post-perihelion. Astrophys. J. 517, 1034–1058 (1999)Google Scholar
  30. 30.
    Crovisier, J., Brooke, T.Y., Leech, K., et al.: The thermal infrared spectra of comets Hale-Bopp and 103P/Hartley 2 observed with the Infrared Space Observatory. In: Sitko, M.L., Sprague, A.L., Lynch, (eds.) Thermal Emission Spectroscopy and Analysis of Dust, Disks, and Regoliths. ASP Conf. Series, vol. 196, pp. 109–117. ASP, San Francisco, CA (2000)Google Scholar
  31. 31.
    Crovisier, J., Leech, K., Bockelee-Morvan, D., Brooke, T.Y., Hanner, M.S., Altieri, B., Keller, H.U., Lellouch, E.: The spectrum of comet Hale–Bopp (C/1995 O1) observed with the Infrared Space Observatory at 2.9 astronomical units from the sun. Science 275, 1904–1907 (1997)Google Scholar
  32. 32.
    Koike, C., Shibai, H., Tuchiyama, A.: Extinction of olivine and pyroxene in the mid- and far-infrared. Mon. Not. R. Astron. Soc. 264, 654–658 (1993)Google Scholar
  33. 33.
    Sandford, S.A., Walker, R.M.: Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5 to 25 microns. Astrophys. J. 291, 838–851 (1985)Google Scholar
  34. 34.
    Wooden, D.H., Butner, H.M., Harker, D.E., Woodward, C.E.: Mg-rich silicate crystals in Comet Hale-Bopp: ISM relics or solar nebula condensates? Icarus 143, 126–137 (2000)Google Scholar
  35. 35.
    Greenberg, J.M., Hage, J.I.: From interstellar dust to comets: a unification of observational constraints. Astrophys. J. 361, 260–274 (1990)Google Scholar
  36. 36.
    Hage, J.I., Greenberg, J.M.: A model for the optical properties of porous grains. Astrophys. J. 361, 251–259 (1990)Google Scholar
  37. 37.
    Brucato, J.R., Colangeli, L., Mennella, V., Palumbo, P., Bussoletti, E.: Silicates in Hale-Bopp: hints from laboratory studies. Planet. Space Sci. 47, 773–779 (1999)Google Scholar
  38. 38.
    Colangeli, L., Mennella, V., Brucato, J.R., Palumbo, P., Rotundi, A.: Characterization of cosmic materials in the laboratory. Space Sci. Rev. 90, 341–354 (1999)Google Scholar
  39. 39.
    Galdemard, P., Lagage, P.O., Dubreuil, D., Jouan, R., Masse, P., Pantin, E., Bockelee-Morvan, D.: Mid-infrared spectro-imaging observations of Comet Hale-Bopp. Earth Moon Planets 78, 271-277 (1999)Google Scholar
  40. 40.
    Harker, D.E., Wooden, D.H., Woodward, C.E., Lisse, C.M.: Grain properties of Comet C/1995 O1 (Hale-Bopp). Astrophys. J. 580, 579–597 (2002)Google Scholar
  41. 41.
    Lisse, C.M., Kraemer, K.E., Nuth, J.A., Li, A., Joswiak, D.: Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale-Bopp 1995 O1 and YSO HD100546. Icarus 191, 223–240 (2007)Google Scholar
  42. 42.
    Hanner, M.S., Lynch, D.K., Russell, R.W.: The 8–13 micron spectra of comets and the composition of silicate grains. Astrophys. J. 425, 274–285 (1994)Google Scholar
  43. 43.
    Hanner, M.S., Hackwell, J.A., Russell, R.W., Lynch, D.K.: Silicate emission feature in the spectrum of comet Mueller 1993a. Icarus 112, 490–495 (1994)Google Scholar
  44. 44.
    Honda, M., et al.: ’The 10 micron spectra of comet C/2002 V1 (NEAT) and C/2001 RX14 (LINEAR). Astrophys. J. 601, 577–582 (2004)Google Scholar
  45. 45.
    Sitko, M.L., Lynch, D.K., Russell, R.W., Hanner, M.S.: 3–14 Micron spectroscopy of comets C/2002 O4 (Honig), C/2002 V1 (NEAT), C/2002 X5 (Kudo-Fujikawa), C/2002 Y1 (Juels-Holvorcem), and 69P/Taylor and the relationships among grain temperature, silicate band strength, and structure among comet families. Astrophys. J. 612, 576–587 (2004)Google Scholar
  46. 46.
    Wooden, D.H., Woodward, C.E., Harker, D.E.: Discovery of crystalline silicates in Comet C/2001 Q4 (NEAT). Astrophys. J. 612, L77–L80 (2004)Google Scholar
  47. 47.
    Kelley, M.S., Wooden, D.H.: The composition of dust in Jupiter family comets inferred from infrared spectroscopy. Planet. Space Sci. 57, 1133–1145 (2008)Google Scholar
  48. 48.
    Lisse, C.M., et al.: Spitzer spectral observations of the Deep Impact ejecta. Science 313, 635–640 (2006)Google Scholar
  49. 49.
    Harker, D.E., Woodward, C.E., Wooden, D.H., Fisher, R.S., Trujillo, C.A.: Gemini-N mid-IR observations of the dust properties of the ejecta excavated from Comet 9P/Tempel 1 during Deep Impact. Icarus 191, 432–453 (2007)Google Scholar
  50. 50.
    Woodward, C.E., Kelley, M.S., Bockelee-Morvan, D., Gehrz, R.D.: Water in Comet C/2003 K4 (LINEAR) with Spitzer. Astrophys. J. 671, 1065–1074 (2007)Google Scholar
  51. 51.
    Bockelee-Morvan, D., Woodward, C.E., Kelley, M.S.: Water, PAHs, and carbonate emission features in Spitzer spectra of comets C/2003 K4 (linear) and 9P/Tempel 1. Bull. Am. Astron. Soc. 39, 508 (2007)Google Scholar
  52. 52.
    Kissel, J., et al.: Composition of comet Halley dust particles from Giotto observations. Nature 321, 336–338 (1986)Google Scholar
  53. 53.
    Kissel, J., et al.: Composition of comet Halley dust particles from Vega observations. Nature 321, 280–282 (1986)Google Scholar
  54. 54.
    Fomenkova, M., Kerridge, J., Marti, K., McFadden, L.: Compositional trends in rock-forming elements of comet Halley dust. Science 258, 266–269 (1992)Google Scholar
  55. 55.
    Lawler, M.E., Brownlee, D.E.: CHON as a component of dust from comet Halley. Nature 359, 810–812 (1992)Google Scholar
  56. 56.
    Jessberger, E.: Rocky cometary particulates: their elemental, isotopic, and mineralogical ingredients. Space Sci. Rev. 90, 91–97 (1999)Google Scholar
  57. 57.
    Jessberger, E., Christoforidis, A., Kissel, J.: Aspects of the major element composition of Halley’s dust. Nature 332, 691–695 (1988)Google Scholar
  58. 58.
    Lawler, M.E., Brownlee, D.E., Temple, S., Wheelock, M.M.: Iron, magnesium, and silicon in dust from Comet Halley. Icarus 80, 225–242 (1989)Google Scholar
  59. 59.
    Schulze, H., Kissel, J., Jessberger, E.: Chemistry and mineralogy of Comet Halley’s dust. In: Pendleton, Y.J., Tielens, A.G.G.M. (eds.) From Stardust to Planetesimals. ASP Conf. Series, vol. 122, pp. 397–414. ASP, San Francisco, CA (1997)Google Scholar
  60. 60.
    Jessberger, E., Kissel, J.: Chemical properties of cometary dust and a note on carbon isotopes. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds.) Comets in the Post-Halley Era, pp. 1075–1092. Kluwer, Dordrecht (1991)Google Scholar
  61. 61.
    Brownlee, D.E.: Cosmic dust: collection and research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985)Google Scholar
  62. 62.
    Rietmeijer, F.J.M.: Interplanetary dust particles. In: Papike, J.J. (ed.) Planetary Materials, Reviews in Mineralogy, vol. 36, pp. 2-1–2-95. Mineralogical Society of America, Chantilly, VA (1998)Google Scholar
  63. 63.
    Nier, A.O., Schlutter D.J.: The thermal history of interplanetary dust particles in the Earth’s stratosphere. Meteoritics 28, 675–681 (1993)Google Scholar
  64. 64.
    Zolensky, M.E., Barrett R.A.: Chondritic interplanetary dust particles: basing their sources on olivine and pyroxene compositions. Meteoritics 29, 616–620 (1994)Google Scholar
  65. 65.
    Zolensky, M.E., Thomas K.: Iron and iron-nickel sulfides in chondritic interplanetary dust particles. Geochim. Cosmochim. Acta 59, 4707–4712. (1995)Google Scholar
  66. 66.
    Klöck, W., Thomas, K.L., McKay, D.S., Palme, P.: Unusual olivine and pyroxene compositions in interplanetary dust and unequilibrated ordinary chondrites. Nature 339, 126–128 (1989)Google Scholar
  67. 67.
    Bradley, J.P.: Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Science 265, 925 (1994)Google Scholar
  68. 68.
    Bradley, J.P., Keller, L.P., Snow, T.P., Hanner, M.S., Flynn, G.J., Gezo, J.C., Clemett, S.J., Brownlee, D.E., Bowey, J.E.: An infrared spectral match between GEMS and interstellar grains. Science 285, 1716–1718 (1999)Google Scholar
  69. 69.
    Zolensky, M.E.: Refractory interplanetary dust particles. Science 237, 1466–1468 (1987)Google Scholar
  70. 70.
    McKeegan, K.D.: Oxygen isotopes in refractory stratospheric dust particles: proof of extraterrestrial origin. Science 237, 1468–1471 (1987)Google Scholar
  71. 71.
    Brownlee, D.E., the PET Team: Comet Wild 2 under a microscope. Science 314, 1710–1714 (2006)Google Scholar
  72. 72.
    Zolensky, M., et al.: ’Mineralogy and petrology of Comet Wild 2 nucleus samples. Science 314, 1735–1740 (2006)Google Scholar
  73. 73.
    Burchell, M.J., Fairey, S., Wozniakiewicz, P., Brownlee, D.E., Horzm F., Kearsley, A.T., See, T., Tsou, P., Westphal, A., Green, S.F., Trigo-Rodriguez, J.M., Dominguez, G.: Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations. Meteorit. Planet. Sci. 43, 23–40 (2008)Google Scholar
  74. 74.
    Barrett R.A., Zolensky M.E., Horz F., Lindstrom D.J., Gibson E.K.: Suitability of silica aerogel as a capture medium for interplanetary dust. Proceedings of the 19th Lunar and Planetary Science Conference, pp. 203–221 (1992)Google Scholar
  75. 75.
    Burchell, M.J., Graham G., Kearsley A.: Cosmic dust collection in aerogel. Annu. Rev. Earth Planet. Sci. 34, 385 (2006)Google Scholar
  76. 76.
    Hörz, F., Zolensky M.E., Bernhard R.P., See T.H., Warren J.L.: Impact features and projectile residues in aerogel exposed on Mir. Icarus 147, 559–579 (2000)Google Scholar
  77. 77.
    Zolensky, M., et al.: Comparing Wild 2 particles to chondrites and IDPs. Meteorit. Planet. Sci. 43, 261–272 (2008)Google Scholar
  78. 78.
    Nakamura, T., Noguchi T., Tsuchiyama A., Ushikubo T., Kita N., Valley J., Zolensky M.E., Kakazu Y., Sakamoto K., Mashio E., Uesugi K., Nakano T.: Chondrulelike objects in short-period comet 81P/Wild. Science 321, 1664–1667 (2008)Google Scholar
  79. 79.
    Matrajt, G., Ito, M., Wirick, S., Messenger, S., Brownlee, D., Joswiak, D., Flynn, G., Sandford, S., Snead, C., Westphal, A.: Carbon investigation of two Stardust particles: a TEM, NanoSIMS, and XANES study. Meteorit. Planet. Sci. 43, 315–334 (2008)Google Scholar
  80. 80.
    Flynn, G.J.,et al.: Elemental compositions of comet 81P/Wild 2 samples collected by Stardust. Science 314, 1730–1733 (2006)Google Scholar
  81. 81.
    Leroux, H., Rietmeijer, F.J.M., Velbel, M.A., Brearley, A.J., Jacob, D., Langenhorst, F., Bridges, J.C., Zega, T.J., Stroud, R.M., Cordier, P., Harvey, R.P., Lee, M., Gounelle, M., Zolensky, M.E.: A TEM study of thermally modified comet 81P/Wild 2 dust particles by interactions with the aerogel matrix during the Stardust capture process. Meteorit. Planet. Sci. 43, 97–120 (2008a)Google Scholar
  82. 82.
    Leroux, H., Stroud, R.M., Dai, Z.R., Graham, G., Troadec, D., Bradley, J., Teslich, N., Borg, J., Kearsley, A., Hörz, F.: Transmission electron microscopy of cometary residues from micron-sized craters in the Stardust Al-foils. Meteorit. Planet. Sci. 43, 143–160 (2008b)Google Scholar
  83. 83.
    Kearsley, A.T., Borg, J., Graham, G.A., Burchell, M.J., Cole, M.J., Lerouz, H., et al.: ’Dust from comet Wild 2: interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminium foils. Meteorit. Planet. Sci. 43, 41–74 (2008)Google Scholar
  84. 84.
    Rietmeijer, F.J.M.: The earliest chemical dust evolution in the solar nebula. Chem. Erde 62, 1–45 (2002)Google Scholar
  85. 85.
    Akai, J.: Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites. Geochim. Cosmochim. Acta 52, 1593–1599 (1988)Google Scholar
  86. 86.
    Zolensky, M.E., Kinard, W.H.: Results of the LDEF meteoroid and debris special investigation group. Adv. Space Res. 13, (8)75–(8)85 (1993)Google Scholar
  87. 87.
    Barrett, R.A., Zolensky, M.E., Bernhard, R.: Mineralogy of chondritic interplanetary dust particle impact residues from LDEF. Lunar Planet. Sci. XXIV, 65–66 (1993)Google Scholar
  88. 88.
    Gounelle, M., Devouard, B., Engrand, C., Genge, M., Topani, A., Leroux, H.: TEM study of Antarctic micrometeorites: a preliminary report. Meteorit. Planet. Sci. 37, A55 (2002)Google Scholar
  89. 89.
    Simon, S.B., Grossman, L.: Petrography and mineral chemistry of the Tagish Lake carbonaceous chondrite. Meteorit. Planet. Sci. 38, 813–825 (2003)Google Scholar
  90. 90.
    Weisberg, M.K., Connolly, H.C., Ebel, D.S.: Petrology and origin of amoeboid olivine aggregates in CR chondrites. Meteorit. Planet. Sci. 39, 1741–1753 (2004)Google Scholar
  91. 91.
    Wogelius, R.A., Walther, J.V.: Olivine dissolution kinetics at near surface conditions. Chem. Geol. 97, 101–112 (1992)Google Scholar
  92. 92.
    Leroux, H., Jacob, D., Stodolna, J., Nakamura-Messenger, K., Zolensky, M.: Igneous Ca-rich pyroxene in comet 81P/Wild 2. Am. Mineral. (93), 1933–1936 (2008c)Google Scholar
  93. 93.
    Joswiak, D.J., Brownlee, D.E., Matrajt, G.I.: Surprisingly high abundance of Na and Cr-rich calcic pyroxenes in Stardust tracks. Lunar Planet. Sci. XXXIX, Abstract 2177 (2008)Google Scholar
  94. 94.
    Brown, M.E., Barkume, K.M., Ragozzine, D., Schaller, E.L.: A collisional family of icy objects in the Kuiper belt. Nature 446, 294–29 (2007)Google Scholar
  95. 95.
    Vaughan, D., Craig, J.: Mineral Chemistry of Metal Sulfides, p. 493 . Cambridge University Press, Cambridge (1978)Google Scholar
  96. 96.
    Bullock, E.S., Gounelle, M., Lauretta, D.S., Grady, M.M., Russell, S.: Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: clues to the extent of aqueous alteration on the CI1 parent body. Geochim. Cosmochim. Acta 69, 2687–2700 (2005)Google Scholar
  97. 97.
    Bradley, J.B., Brownlee, D.E.: An interplanetary dust particle linked directly to CM meteorites and an asteroidal origin. Science 251, 549–552 (1991)Google Scholar
  98. 98.
    Zolensky, M.E., Barrett, R.A., Browning, L.: Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3123–3148 (1993)Google Scholar
  99. 99.
    Simon, S.B., Joswiak, D.J., Ishii, H.A., Bradley, J.P., Chi, M., Grossman, L., Aléon, J., Brownlee, D.E., Fallon, S., Hutcheon, I.D., Matrajt, G., McKeegan, K.D.: A refractory inclusion returned by Stardust from comet Wild 2. Meteorit. Planet. Sci. 43, 1861–1877 (2008)Google Scholar
  100. 100.
    McKeegan, K., Aléon, J., Bradley, J., Brownlee, D., Busemann, H., Butterworth, A., et al.: Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–1728 (2006)Google Scholar
  101. 101.
    Ebel, D.S.: Condensation of rocky material in astrophysical environments. In: Lauretta, D., et al. (eds.) Meteorites and the Early Solar System II, pp. 253–277. University of Arizona, Tucson, AZ (2006)Google Scholar
  102. 102.
    Grossman, J.N., Rubin, A.E., MacPherson, G.J.: A unique volatile-poor carbonaceous chondrite with implications for nebular agglomeration and fractionation processes. Earth Planet. Sci. Lett. 91, 33–54 (1988)Google Scholar
  103. 103.
    Gaffey, M.J., Bell, J.F., Cruikshank, D.P.: Reflectance spectroscopy and asteroid surface mineralogy. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroid II, pp. 98–127. University of Arizona Press, Tucson, AZ (1989)Google Scholar
  104. 104.
    Ishii, H.A., Bradley, J.P., Dai, Z.R., Chi, M., Kearsley, A.T., Burchell, M.J., Browning, N.D., Molster, F.: Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. Science 319, 447–450 (2008)Google Scholar
  105. 105.
    Keller, L.P., Messenger, S.: Relict amorphous silicates in Stardust samples. 71st Annual Meteoritical Society Meeting, Matsue, Japan (2008)Google Scholar
  106. 106.
    Akai, J.: Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162. Proceedings of the NIPR Symposium on Antarctic Meteorites, No. 3, pp. 55–68. (1990)Google Scholar
  107. 107.
    Zolensky, M.E., Prinz, M., Lipschutz, M.E.: Mineralogy and thermal history of Y-86720, Y-86720 and B-7904. Proceedings of the 16th Symposium on Antarctic Meteorites, Tokyo, 78-2 (1991)Google Scholar
  108. 108.
    Okudaira, K., Noguchi, T., Nakamura, T., Sugita, S., Sekine, Y., Yano, H.: Evaluation of mineralogical alteration of micrometeoroid analog materials captured in aerogel. Adv. Space Res. 34, 2299–2304 (2004)Google Scholar
  109. 109.
    Okudaira, K., Yano, H., Noguchi, T., Nakamura, T., Burchell, M.J., Cole, M.J.: Are they really intact? — Evaluation of captured micrometeoroid analogs by aerogel at the flyby speed of Stardust. Lunar Planet. Sci. XXXVII, 1832 (2006)Google Scholar
  110. 110.
    Cody, G.D., Yabuta, H., Alexander, C.M.O’d, Araki, T., Kilcoyne, A.L.D., The Stardust Pet TEAM: Placing comet 81p/Wild 2 organic particles into context with chondritic organic solids. Lunar Planet. Sci. XXXVIII, Abstract 2286 (2007)Google Scholar
  111. 111.
    Sandford, S.A., Aléon, J., Alexander, C.M.O.’D., Araki, T., Bajt, S., Baratta, G.A., et al.: Organics captured from comet Wild 2 by the Stardust spacecraft. Science 314, 1720–1724 (2006)Google Scholar
  112. 112.
    Wirick, S., Leroux, H., Tomeoka, K., Zolensky, M., Flynn, G., Tyliszczak, T., Butterworth, A., Tomioka, N., Ohnishi, I., Nakamura-Messenger, K., Sandford, S., Keller, L., Jacobsen, C.: Carbonates found in Stardust aerogel tracks. Lunar Planet. Sci. XXXVIII, p.1534 (2007)Google Scholar
  113. 113.
    Mikouchi, T., Tachikawa, O., Hagiya, K., Ohsumi, K., Zolensky, M.: Mineralogy and crystallography of comet 81P/Wild 2 particles returned by the Stardust mission. Lunar Planet. Sci. XXXVIII, p. 1946 (2007)Google Scholar
  114. 114.
    Tonui, E., Zolensky, M.E., Lipschutz, M.E.: Petrography, mineralogy and trace element chemistry of Y-86029, Y-793321 and LEW 85332: aqueous alteration and heating events. Proceedings of the NIPR Symposium on Antarctic Meteorites, No. 15, pp. 38–58 (2002)Google Scholar
  115. 115.
    Zolensky, M., Lindstrom, D.J.: Mineralogy of 12 large chondritic interplanetary dust particles. Proceedings of the 19th Lunar and Planetary Science Conference, pp. 161–169 (1992)Google Scholar
  116. 116.
    Wooden, D.H.: Cometary refractory grains: interstellar and nebular sources. Space Sci. Rev. 138, 75–108 (2008)Google Scholar
  117. 117.
    Martin, P.G.: On the value of GEMS (glass with embedded metal and sulfides). Astrophys. J. 445, L63–L66 (1995)Google Scholar
  118. 118.
    Goodman, A.A., Whittet, D.C.B.: A point in favor of the superparamagnetic grain hypothesis. Astrophys. J. 455, L181–L184 (1995)Google Scholar
  119. 119.
    Messenger, S., Keller, L.P., Stadermann, F.J., Walker, R.M., Zinner, E.: Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300, 105–108 (2003)Google Scholar
  120. 120.
    Keller, L.P., Messenger, S.: Coordinated chemical and isotopic studies of GEMS grains in IDPs. Lunar Planet. Sci. 39, 2347 (2008)Google Scholar
  121. 121.
    Bradley, J.P., Dai, Z.R.: Mechanism of formation of glass with embedded metal and sulfides. Astrophys. J. 617, 650–655 (2004)Google Scholar
  122. 122.
    Westphal, A.J., Bradley, J.P.: Formation of glass with embedded metal and sulfides from shock-accelerated crystalline dust in superbubbles. Astrophys. J. 617, 1131–1141 (2004)Google Scholar
  123. 123.
    Tielens, A.G.G.M., Waters, L.B.F.M., Bernatowicz, T.J.: Origin and evolution of dust in circumstellar and interstellar environments. In: Krot, A.N., Scott, E.R.D., Reipurth, B. (eds.) Chondrules and the Protoplanetary Disk. ASP Conf. Series vol. 341, pp. 605–651. ASP, San Francisco, CA (2005)Google Scholar
  124. 124.
    Waters, L.B.F.M., Molster, F.J., de Jong, T., et al.: Mineralogy of oxygen-rich dust shells. Astron. Astrophys. 315, L361–L364 (1996)Google Scholar
  125. 125.
    Kemper, F., Vriend, W.J., Tielens, A.G.G.M.: The absence of crystalline silicates in the diffuse interstellar medium. Astrophys. J. 609, 826–837 (2004)Google Scholar
  126. 126.
    Kemper, F., Vriend, W.J., Tielens, A.G.G.M.: Erratum: the absence of crystalline silicates in the diffuse interstellar medium. Astrophys. J. 633, 534 (2005)Google Scholar
  127. 127.
    Waelkens, C., Waters, L.B.F.M., de Graauw, M.S., et al.: SWS observations of young main-sequence stars with dusty circumstellar disks. Astron. Astrophys. 315, L245–248 (1996)Google Scholar
  128. 128.
    Weinberger, A.J., Becklin, E.E., Schneider, G., Chang, E.I., Lowrance, P.J., Silverstone, M., Zuckerman, B., Hines, D.C., Smith, B.A.: Infrared views of the TW Hydra disk. Astrophys. J. 566, 409–418 (2002)Google Scholar
  129. 129.
    Malfait, K., Waelkens, C., Waters, L.B.F.M., Vandenbussche, B., Huygen, E., de Graauw, M.S.: The spectrum of the young star HD100546 observed with the Infrared Space Observatory. Astron. Astrophys. 332, L25–L28 (1998)Google Scholar
  130. 130.
    Knacke, R.F., Fajardo-Acosta, S.B., Telesco, C.M., Hackwell, J.A., Lynch, D.K., Russell, R.W.: The silicates in the disk of β pictoris. Astron. Astrophys. 418, 440–450 (1993)Google Scholar
  131. 131.
    Grady, C.A., Sitko, M.L., Bjorkman, K.S., Perez, M.R., Lynch, D.K., Russell, R.W., Hanner, M.S.: The star-grazing extrasolar comets in the HD100546 system. Astrophys. J. 483, 449–456 (1997)Google Scholar
  132. 132.
    Weissman, P.R.: The Vega particulate shell: comets or Asteroids. Science 224, 987 (1984)Google Scholar
  133. 133.
    Gail, H.-P.: Radial mixing in protoplanetary accretion disks IV. Metamorphosis of the silicate dust complex. Astron. Astrophys. 413, 571–591 (2004)Google Scholar
  134. 134.
    Bradley, J.P., Brownlee, D.E., Veblen, D.R.: Pyroxene whiskers and platelets in interplanetary dust: evidence of vapour phase growth. Nature 301, 473–477 (1983)Google Scholar
  135. 135.
    Boss, A.P.: Mixing in the solar nebula: implications for isotopic heterogeneity and large-scale transport of refractory grains. Earth Planet. Sci. Lett. 268, 102–109 (2008)Google Scholar
  136. 136.
    Ciesla, F.J.: Outward transport of high-temperature materials around the midplane of the solar nebula. Science 318, 613–615 (2007)Google Scholar
  137. 137.
    Shu, F.H., Shang, H., Glassgold, A.E., Lee, T.: X-rays and fluctuating X-winds from protostars. Science 277, 1475–1475 (1997)Google Scholar
  138. 138.
    Cuzzi, J.N., Zahnle, K.: Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts. Astrophys. J. 614, 490–496 (2004)Google Scholar
  139. 139.
    Greenberg, J.M.: What are comets made of? A model based on interstellar dust. In: Wilkening, L.L. (ed.) Comets, pp. 131–163. University of Arizona Press, Tucson (1982)Google Scholar
  140. 140.
    Fomenkova, M.N., Chang, S., Mukhin, L.M.: Carbonaceous components in the comet Halley dust. Geochim. Cosmochim. Acta 58, 4503–4512 (1994)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.University of MassachusettsAmherstUSA
  2. 2.NASA Johnson Space CenterHoustonUSA

Personalised recommendations