Skip to main content

Formation and Evolution of Minerals in Accretion Disks and Stellar Outflows

  • Chapter
  • First Online:
Astromineralogy

Part of the book series: Lecture Notes in Physics ((LNP,volume 815))

Abstract

The contribution discusses dust formation and dust processing in oxygen-rich stellar outflows under non-explosive conditions, and in circumstellar discs. The main topics are calculation of solid-gas chemical equilibria, the basic concepts for calculating dust growth under non-equilibrium conditions, dust processing by annealing and solid diffusion, a discussion of non-equilibrium dust formation in stellar winds, and in particular a discussion of the composition and evolution of the mineral mixture in protoplanetary accretion discs. An overview is given over the data on dust growth, annealing, and on solid diffusion for astrophysically relevant materials available so far from laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If necessary, other phases than gaseous ones are indicated by “s” for solids or “l” for liquid. In the present contribution we indicate this by adding a corresponding label in brackets after the chemical formula. E.g., the reaction corresponding to the sublimation of solid iron is written as follows: \(\mathrm{Fe(s)} \to \mathrm{Fe}\). Here Fe(s) denotes solid iron and Fe iron atoms in the gas phase

  2. 2.

    For instance, for \(\mathrm{MgSiO}_3\) the least abundant of the elements Mg, Si, and O in the cosmic element mixture is Mg. Then it would be appropriate to chose Mg as the reference element for defining a degree of condensation. However, because of a similar abundance of Mg and Si, an equally appropriate choice for the reference element would be Si. Generally the choice of a reference element for defining condensation degrees is to some extent arbitrary and one can chose that one which is the most convenient for the problem under consideration.

  3. 3.

    In case of element mixture No. 4 of Table 1 one has to use He as reference element for definition of abundances ε. The modifications required to all equations in that case are obvious.

  4. 4.

    For example: If j refers to \(\mathrm{Al}_2\mathrm{O}_3\) (corundum) and we define the degree of condensation f for corundum with respect to Al, and if k refers to oxygen, then one has in the contribution from corundum to the l.h.s of the equation for oxygen \(\nu_{j,k}=3/2\), since in the chemical formula there is 1.5 oxygen atom per aluminium atom. In the contribution to the equation for Al one has \(\nu_{j,k}=1\) because Al is the reference element for corundum.

  5. 5.

    also available at: http://webbook.nist.gov/chemistry/form-ser.html

  6. 6.

    The existence of chondrules in meteoritic material shows, however, that by local, not yet understood processes, some part of the disk matter was flash-heated to temperatures above the melting point.

  7. 7.

    Rotation of dust aggregates is neglected.

  8. 8.

    In Gail [99] the factor h was missing.

  9. 9.

    Dust temperatures may also be high in high layers of the disk photosphere where the dust is irradiated by the proto-star, but this region contains a negligible fraction of the total surface density \(\varSigma(r)\).

  10. 10.

    \(\mathrm{H}_2\mathrm{O}\) in any case is so abundant that abundance variations with varying degree of condensation of the silicates can be neglected.

References

  1. Herwig, F.: Annu. Rev. Astron. Astrophys. 43, 435 (2005)

    Article  Google Scholar 

  2. Boothroyd, A.I., Sackmann, I.-J.: Astrophys. J. 510, 232 (1999)

    Article  Google Scholar 

  3. Schaller, G., Schaerer, D., Meynet, G., Maeder, A.: Astron. Astrophys. Suppl. 96, 269 (1992)

    Google Scholar 

  4. Meynet, G., Maeder, A., Schaller, G., Schaerer, D., Charbonnel, C.: Astron. Astrophys. Suppl. 103, 97 (1994)

    Google Scholar 

  5. Anders, E., Grevesse N.: Geochim. Cosmochim. Acta 53, 197 (1989)

    Article  Google Scholar 

  6. Grevesse, N., Noels, A.: Cosmic abundances of the elements. In: Prantzos, N., Vangioni-Flam, E., Cassé, M. (eds.) Origin and Evolution of the Elements, pp. 15–25. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  7. Soubiran, C., Girard, P.: Astron. Astrophys. 438, 139 (2005)

    Article  Google Scholar 

  8. Lodders, K., Palme, H., Gail, H.-P.: Abundance of the elements in the solar system. In: Landolt-Börnstein New Series, Astronomy and Astrophysics, Springer Verlag, Berlin (2009)

    Google Scholar 

  9. Tielens, A.G.G.M.: The destruction of interstellar dust. In: Greenberg, J.M., Li, A. (eds.) Formation and Evolution of Solids in Space, pp. 331–375. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  10. Zhukovska, S.V., Gail, H.-P., Trieloff, M.: Astron. Astrophys. 479, 453 (2008)

    Article  Google Scholar 

  11. Atkins, P.W.: Physical Chemistry, 5th edn. Oxford University Press, Oxford (1994)

    Google Scholar 

  12. Smith, W.R., Missen, R.W.: Chemical Reaction Equilibrium Anaysis: Theory and Algorithms. Wiley, New York, NY (1982)

    Google Scholar 

  13. Chase, M.W.: NIST-JANAF thermochemical tables. 4th edn. J. Phys. Chem. Ref. Data, Monograph No. 9 (1998)

    Google Scholar 

  14. Barin, I.: Thermochemical Data of Pure Substances, vols. I and II, 3rd edn. VCH Verlagsgesellschaft, Weinheim (1995)

    Book  Google Scholar 

  15. Saxena, S.K., Chatterjee, N., Fei, Y., Shen, G.: Thermodynamic Data on Oxides and Silicates. Springer, Heidelberg (1993)

    Book  Google Scholar 

  16. Kubaschewski, O., Alcock, C.B.: Metallurgical Chemistry, 5th edn. Pergamon Press, Oxford (1983)

    Google Scholar 

  17. Sharp, C.M., Huebner, W.F.: Astrophys. J. Suppl. 72, 417 (1990)

    Article  Google Scholar 

  18. Grossman, L.: Geochim. Cosmochim. Acta 36, 597 (1972)

    Article  Google Scholar 

  19. Gail, H.-P.: Astron. Astrophys. 332, 1099 (1998)

    Google Scholar 

  20. Gail, H.-P., Sedlmayr, E.: Dust formation in M stars. In: Hartquist, T.W., Williams, D.A. (eds.) The Molecular Astrophysics of Stars and Galaxies, pp. 285–312. Oxford University Press, Oxford (1998)

    Google Scholar 

  21. Sharp, C.M., Wasserburg, G.J.: Geochim. Cosmochim. Acta 59 1633 (1995)

    Article  Google Scholar 

  22. Gilman, R.C.: Astrophys. J. 155, L185 (1969)

    Article  Google Scholar 

  23. Larimer, J.W.: Geochim. Cosmochim. Acta 31, 1215 (1967)

    Article  Google Scholar 

  24. Lattimer, J.M., Schramm, D.N., Grossman, L.: Astrophys. J. 219, 230 (1978)

    Article  Google Scholar 

  25. Saxena, S.K., Eriksson, G.: Chemistry of the formation of the terrestrial planets. In: Saxena, S.K. (ed.) Chemistry and Physics of Terrestrial Planets, pp. 30–105. Springer, New York, NY (1986)

    Chapter  Google Scholar 

  26. Lodders, K., Fegley, B., Jr.: Meteoritics 30, 661 (1995)

    Article  Google Scholar 

  27. Lodders, K., Fegley, B., Jr.: Condensation chemistry of carbon stars. In: Bernatowicz, T.J., Zinner, E.K. (eds.) Astrophysical Implications of the Laboratory Study of Presolar Materials, pp. 391–423. American Institute of Physics, New York, NY (1997)

    Chapter  Google Scholar 

  28. Lodders, K., Fegley, B., Jr.: Condensation chemistry of circumstellar grains. In: Le Bertre, T., Lèbre, A., Waelkens, C. (eds.) Asymptotic Giant Branch Stars, pp. 279–289. ASP, San Francisco, CA (1999)

    Google Scholar 

  29. Glassgold, A.E.: Annu. Rev. Astron. Astrophys. 34, 241 (1996)

    Article  Google Scholar 

  30. Ebel, D.S., Grossman, L.: Geochim. Cosmochim. Acta 64, 339 (2000)

    Article  Google Scholar 

  31. Krot, A., Fegley, B., Jr., Lodders, K., Palme, H.: Meteoritical and astrophysical constraints on the oxidation state of the solar nebula. In: Mannings, V., Boss, A.P., Russel, S.S. (eds.) Protostars and Planets IV, pp. 1019–1054. University of Arizona Press, Tucson, AZ (2000)

    Google Scholar 

  32. Davis, A.M., Richter, F.M.: Condensation and evaporation of solar system materials In: Davis, A.M. (ed.) Treatise on Geochemistry, vol. 1, p. 407. Elsevier, Amsterdam (2003)

    Google Scholar 

  33. Ferrarotti, A.S., Gail, H.-P.: Astron. Astrophys. 382, 256 (2002)

    Article  Google Scholar 

  34. Saxena, S.K.: Thermodynamics of Rock-Forming Crystalline Solutions. Springer, Berlin (1973)

    Book  Google Scholar 

  35. Schmalzried, H., Navrotsky, A.: Festkörperthermodynamik. Verlag Chemie, Weinheim (1975)

    Google Scholar 

  36. Schmalzried, H.: Chemical Kinetics of Solids. Wiley-VCH, Weinheim (1995)

    Book  Google Scholar 

  37. Philpotts, A.R.: Principles of Igneous and Metamorphic Petrology. Prentice Hall, Englewood Cliffs, NJ (1990)

    Google Scholar 

  38. Putnis, A.: An Introduction to Mineral Sciences. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  39. Wood, B.J., Kleppa, O.J.: Geochim. Cosmochim. Acta 45, 534 (1981)

    Article  Google Scholar 

  40. Blander, M., Katz, J.L.: Geochim. Cosmochim. Acta 31, 1025 (1967)

    Article  Google Scholar 

  41. Molster, F.J., Waters, L.B.F.M., Tielens, A.G.G.M., Barlow, M.J.: Astron. Astrophys. 382, 184 (2002)

    Article  Google Scholar 

  42. Molster, F.J., Waters, L.B.F.M., Tielens, A.G.G.M.: Astron. Astrophys. 382, 222 (2002)

    Article  Google Scholar 

  43. Molster, F.J., Waters, L.B.F.M., Tielens, A.G.G.M., Koike, C., Chihara, H.: Astron. Astrophys. 382, 241 (2002)

    Article  Google Scholar 

  44. Weidenschilling, S.J., Cuzzi, J.N.: Formation of planetesimals in the solar nebula. In: Levy, E.H., Lunine, J.I. (eds.) Protostars and Planets III, pp. 1031–1060. University of Arizona Press, Tucson, AZ (1993)

    Google Scholar 

  45. Pruppacher, H.R., Klett, J.D.: Microphysics of Clouds and Precipitation. Reidel, Dordrecht (1978)

    Book  Google Scholar 

  46. Rietmeijer, F.J.M., Nuth, J.A., III: Astrophys. J. 527, 395 (1999)

    Article  Google Scholar 

  47. Rietmeijer, F.J.M., Nuth, J.A., III, Karner, J.M.: Phys. Chem. Chem. Phys. 1, 1511 (1999)

    Article  Google Scholar 

  48. Rietmeijer, F.J.M., Karner, J.M.: J. Chem. Phys. 110, 4554 (1999)

    Article  Google Scholar 

  49. Toppani, A., Libourel, G., Robert, F., Ghanbaja, J.: Geochim. Cosmochim. Acta 70, 5035 (2006)

    Article  Google Scholar 

  50. Lide, R.D.: CRC Handbook of Chemistry and Physics, 76th edn. CRC Press, Boca Raton, FL (1995)

    Google Scholar 

  51. Nagahara, H., Kushiro, I., Mysen, B.O.: Geochim. Cosmochim. Acta 58, 1951 (1994)

    Article  Google Scholar 

  52. Nagahara, H., Kushiro, I., Mysen, B.O., Mori, H.: Nature 331, 516 (1988)

    Article  Google Scholar 

  53. Hashimoto, A.: Nature 347, 53 (1990)

    Article  Google Scholar 

  54. Wang, J., Davis, A.M., Clayton, R.N., Hashimoto, A.: Geochim. Cosmochim. Acta 63, 953 (1999)

    Article  Google Scholar 

  55. Nichols, R.H., Jr., Wasserburg, G.J.: Lunar Planet. Sci. Conf. XXVI, 1047 (1995)

    Google Scholar 

  56. Nichols, R.H., Jr., Grimley, R.T., Wasserburg, G.J.: Meteorit. Planet. Sci. 33, A115 (1998)

    Article  Google Scholar 

  57. Johansen, A., Klahr, H., Mee, A.J.: Mon. Not. R. Astron. Soc. 370, L71 (2006)

    Article  Google Scholar 

  58. Inaba, H., Tachibana, S., Nagahara, H., Ozawa, K.: Lunar Planet. Sci. Conf. XXXII, 1837 (2001)

    Google Scholar 

  59. Nagahara, H., Ozawa, K.: Meteoritcs 29, 508 (1994)

    Google Scholar 

  60. Nagahara, H., Ozawa, K.: Geochim. Cosmochim. Acta 60, 1445 (1996)

    Article  Google Scholar 

  61. Hashimoto, A.: Meteorit. Planet. Sci. 33, A65 (1998)

    Article  Google Scholar 

  62. Tsuchiyama, A., Tachibana, S., Takahashi, T.: Geochim. Cosmochim. Acta 63, 2451 (1999)

    Article  Google Scholar 

  63. Tachibana, S., Tsuchiyama, A., Nagahara, H.: Lunar Planet. Sci. Conf. XXIX, 1539 (1998)

    Google Scholar 

  64. Tachibana, S., Tsuchiyama, A., Nagahara, H.: Lunar Planet. Sci. Conf. XXXI, 1588 (2000)

    Google Scholar 

  65. Tachibana, S., Tsuchiyama, A., Nagahara, H.: Geochim. Cosmochim. Acta 66, 713 (2002)

    Article  Google Scholar 

  66. Landolt-Börnstein, Schäfer, K. (ed.) Zahlenwerte und Funktionen, vol. 5b. Springer Verlag, Heidelberg (1968)

    Google Scholar 

  67. Mendybaev, R.A., Beckett, J.R., Grossman, L., Stolper, E.: Lunar Planet. Sci. Conf. XXIX, 1871 (1998)

    Google Scholar 

  68. Ferrarotti, A.S., Gail, H.-P.: Astron. Astrophys. 371, 133 (2001)

    Article  Google Scholar 

  69. Tachibana, S., Nagahara, H., Ozawa, K.: Lunar Planet. Sci. Conf. XXXII, 1767 (2001)

    Google Scholar 

  70. Ferguson, F.T., Nuth, J.A., III: J. Chem. Eng. Data 53, 2824 (2008)

    Article  Google Scholar 

  71. Klevenz, M.: Thesis, University of Heidelberg (2009)

    Google Scholar 

  72. Salpeter, E.E.: Astrophys. J. 193, 579 (1974)

    Article  Google Scholar 

  73. Draine, B.T.: Astrophys. Space Sci. 65, 313 (1979)

    Article  Google Scholar 

  74. Gail, H.-P., Sedlmayr, E.: Astron. Astrophys. 206, 153 (1988)

    Google Scholar 

  75. Patzer, A.B.C., Gauger, A., Sedlmayr, E.: Astron. Astrophys. 337, 847 (1998)

    Google Scholar 

  76. Yamamoto, T., Chigai, T., Watanabe, S., Kozasa, T.: Astron. Astrophys. 380, 373 (2001)

    Article  Google Scholar 

  77. Keller, R.: Polyaromatic hydrocarbons and the condensation of carbon in stellar winds. In: Legér, A., d’Hendecourt, L., Boccara, N. (eds.) Polycyclic Aromatic Hydrocarbons and Astrophysics, pp. 387–397. Reidel, Dordrecht (1987)

    Chapter  Google Scholar 

  78. Frenklach, M., Feigelson, E.D.: Astrophys. J. 341, 372 (1989)

    Article  Google Scholar 

  79. Cherchneff, I., Barker, J.R., Tielens, A.G.G.M.: Astrophys. J. 401, 269 (1992)

    Article  Google Scholar 

  80. Bernatowicz, T.J., Cowsik, R., Gibbons, P.C., Lodders, K., Fegley, B., Jr., Amari, S., Lewis, R.S.: Astrophys. J. 472, 760 (1996)

    Article  Google Scholar 

  81. Sedlmayr, E., Krüger, D.: Formation of dust particles in cool stellar outflows. In: Bernatowicz, T.J., Zinner, E.K. (eds.) Astrophysical Implications of the Laboratory Studies of Presolar Material, pp. 425–450. American Institute of Physics, New York, NY (1997)

    Chapter  Google Scholar 

  82. Cherchneff, I., Le Teuff, Y.H., Williams, P.M., Tielens, A.G.G.M.: Astron. Astrophys. 357, 572 (2000)

    Google Scholar 

  83. Clayton, D.D., Deneault, E.A.-N., Meyer, B.S.: Astrophys. J. 562, 480 (2001)

    Article  Google Scholar 

  84. Gail, H.-P., Sedlmayr, E.: Faraday Discuss. 109, 303 (1998)

    Article  Google Scholar 

  85. Jeong, K.S., Chang, Ch., Sedlmayr, E., Sülzle, D.: J. Phys. B 33, 3417 (2000)

    Article  Google Scholar 

  86. Chang, C., Patzer, A.B.C., Sedlmayr, E., Sülzle, D.: Eur. Phys. J. D 2, 57 (1998)

    Article  Google Scholar 

  87. Chang, Ch., Patzer, A.B.C., Sedlmayr, E., Steinke, T., Sülzle, D.: Chem. Phys. Lett. 324, 108 (2000)

    Article  Google Scholar 

  88. Patzer, A.B.C., Chang, C., Sedlmayr, E., Sülzle, D.: Eur. Phys. J. D 6, 57 (1999)

    Article  Google Scholar 

  89. Hallenbeck, S.L., Nuth, J.A., III, Daukantas, P.L.: Icarus 131, 198 (1998)

    Article  Google Scholar 

  90. Brucato, J.R., Colangeli, L., Mennella, V., Palumbo, P., Bussoletti, E.: Astron. Astrophys. 348, 1012 (1999)

    Google Scholar 

  91. Hallenbeck, S.L., Nuth, J.A., III, Nelson, R.N.: Astrophys. J. 535, 247 (2000)

    Article  Google Scholar 

  92. Fabian, D., Jäger, C., Henning, Th., Dorschner, J., Mutschke, H.: Astron. Astrophys. 364, 282 (2000)

    Google Scholar 

  93. Thompson, S.P., Tang, C.C.: Astron. Astrophys. 368, 721 (2001)

    Article  Google Scholar 

  94. Lenzuni, P., Gail, H.-P., Henning, Th.: Astrophys. J. 447, 848 (1995)

    Article  Google Scholar 

  95. Kouchi, A., Yamamoto, T., Kozasa, T., Kuroda, T., Greenberg, J.M.: Astron. Astrophys. 290, 1009 (1994)

    Google Scholar 

  96. Sogawa, H., Kozasa, T.: Astrophys. J. 516, L33 (1999)

    Article  Google Scholar 

  97. Klahr, H.H., Bodenheimer, P.: Astrophys. J. 582, 869 (2003)

    Article  Google Scholar 

  98. Carter, G.: Philos. Mag. 79, 2773–2784 (1999)

    Article  Google Scholar 

  99. Gail, H.-P.: Astron. Astrophys. 387, 192 (2001)

    Article  Google Scholar 

  100. Kozasa, T., Sogawa, H.: Formation of crystalline silicate around oxygen-rich AGB stars. In: Le Bertre, T., Lèbre, A., Waelkens, C. (eds.) Asymptotic Giant Branch Stars, pp. 239–244. ASP, San Francisco, CA (1999)

    Google Scholar 

  101. Freer, R.: Contrib. Mineral. Petrol. 76 440 (1981)

    Article  Google Scholar 

  102. Brady, J.B.: Diffusion data for silicate minerals, glasses and liquids. In: Ahrens, Th.J. (ed.) Mineral Physics and Crystallography, A Handbook of Physical Constants, pp. 269–290. American Geophysical Union, Washington, DC (1995)

    Chapter  Google Scholar 

  103. Chakraborty, S.: J. Geophys. Res. 102, 12 317 (1997)

    Article  Google Scholar 

  104. Schwandt, C.S., Cygan, R.T., Westrich, H.R.: Contrib. Mineral. Petrol. 130, 390 (1998)

    Article  Google Scholar 

  105. Nagasawa, H., Suzuki, T., Ito, M., Morioka, M.: Phys. Chem. Miner. 28, 706 (2001)

    Article  Google Scholar 

  106. Buening, D.K., Buseck, P.R.: J. Geophys. Res. 78, 6852 (1973)

    Article  Google Scholar 

  107. Misener, D.J.: Cationic diffusion in olivine to 1400°C and 35 kbar. In: Hoffman, A.W., Giletti, B.J., Yoder, H.S., Yund, R.A. (eds.) Geochemical Transport and Kinetics, pp. 117–129. Carnegie Institute of Washington, Washington, DC (1974)

    Google Scholar 

  108. Morioka, M.: Geochim. Cosmochim. Acta 44, 759 (1980)

    Article  Google Scholar 

  109. Morioka, M.: Geochim. Cosmochim. Acta 45, 1573 (1981)

    Article  Google Scholar 

  110. Chakraborty, S., Farver, J.R., Yund, R.A., Rubie, D.C.: Phys. Chem. Miner. 21, 489 (1994)

    Article  Google Scholar 

  111. Ozawa, K., Nagahara, H.: Geochim. Cosmochim. Acta 64, 939 (2000)

    Article  Google Scholar 

  112. Klügel, A.: Contrib. Mineral. Petrol. 141 1 (2001)

    Article  Google Scholar 

  113. Imae, N., Tsuchiyama, A., Kitamura, M.: Earth Planet. Sci. Lett. 118, 21 (1993)

    Article  Google Scholar 

  114. Milke, R., Dohmen, R., Becker, H.-W., Wirth, R.: Contrib. Mineral. Petrol. 154, 519 (2007)

    Article  Google Scholar 

  115. Lauretta, D.S., Kremser, D.T., Fegley, B., Jr.: Icarus 122, 288 (1996)

    Article  Google Scholar 

  116. Kerridge, J.F.: Icarus 106, 135 (1993)

    Article  Google Scholar 

  117. Tachibana, S., Tsuchiyama, A.: Geochim. Cosmochim. Acta 62, 2005 (1998)

    Article  Google Scholar 

  118. Hong, Y., Fegley, B., Jr.: Meteorit. Planet. Sci. 33, 1101 (1998)

    Article  Google Scholar 

  119. Allen, C.C., Morris, R.V., Lauer, H.V., Jr., McKay, D.S.: Icarus 104, 291 (1993)

    Article  Google Scholar 

  120. Nittler, L.R., Alexander, C.M.O., Gao, X., Walker, R.M., Zinner, E.: Astrophys. J. 483, 475 (1997)

    Article  Google Scholar 

  121. Groenewegen, M.A.T., van den Hoek, L.B., de Jong, T.: Astron. Astrophys. 293, 381 (1995)

    Google Scholar 

  122. Lattanzio, J., Forestini, M.: Nucleosynthesis in AGB stars. In: Le Bertre, T., Lèbre, A., Waelkens, C. (eds.) IAU Symposium 191: Asymptotic Giant Branch Stars, pp. 31–40. ASP, San Francisco, CA (1999)

    Google Scholar 

  123. Scalo, J.M., Ross, J.E.: Astron. Astrophys. 48, 219 (1976)

    Google Scholar 

  124. Blöcker, T.: Astrophys. Space Sci. 275, 1 (2001)

    Article  Google Scholar 

  125. Gail, H.-P., Sedlmayr, E.: Astron. Astrophys. 177, 186 (1987)

    Google Scholar 

  126. Gail, H.-P., Sedlmayr, E.: Astron. Astrophys. 347, 594 (1999)

    Google Scholar 

  127. Ferrarotti, A.S., Gail, H.-P.: Astron. Astrophys. 398, 1029 (2003)

    Article  Google Scholar 

  128. Posch, Th., Kerschbaum, F., Mutschke, H., Dorschner, J., Jäger, C.: Astron. Astrophys. 393, L7 (2002)

    Article  Google Scholar 

  129. Rubin, A.E.: Meteorit. Planet. Sci. 32, 231 (1997)

    Article  Google Scholar 

  130. Cuzzi, J.N., Ciesla, F.J., Petaev, M.I., Krot, A.N., Scott, E.R.D., Weidenschilling, S.J.: Nebular evolution of thermally processed solids: reconciling models and meteorites. In: Krot, A.N., Scott, E.R.D., Reipurth, B. (eds.) Chondrites and the Protoplanetary Disk. ASP Conf. Ser. vol. 341, pp. 732–773. ASP, San Francisco, CA (2005)

    Google Scholar 

  131. Wooden, D., Desch, S., Harker, D., Gail, H.-P., Keller, L.: Comet grains and implications for heating and radial mixing in the protoplanetary disk. In: Reipurth, B., Jewitt, D., Keil, K. (eds.) Protostars and Planets V, pp. 815–833. University of Arizona Press, Tucson, AZ (2007)

    Google Scholar 

  132. Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A.: Icarus 200, 672 (2009)

    Article  Google Scholar 

  133. Pollack, J.B., Hollenbach, D., Beckwith, S., Simonelli, D.P., Roush, T., Fong, W.: Astrophys. J. 421, 615 (1994)

    Article  Google Scholar 

  134. Watson, D.M.: Mineralization, grain growth and disk structure: observations of the evolution of dust in protoplanetary disk. In: Henning, Th., Gruen, E., Steinacker, J. (eds.) Cosmic Dust – Near and Far. ASP Conf. Ser., vol. 414, pp. 77–98. ASP, San Francisco, CA (2009)

    Google Scholar 

  135. Duschl, W.J., Gail, H.-P., Tscharnuter, W.M.: Astron. Astrophys. 312, 624 (1996)

    Google Scholar 

  136. Wehrstedt, M., Gail, H.-P.: Astron. Astrophys. 385, 181 (2002)

    Article  Google Scholar 

  137. Draine, B.: Evolution of interstellar dust. In: Blitz, L. (ed.) The Evolution of the Interstellar Medium. ASP Conf. Proc. vol. 12, p. 193. ASP, San Francisco, CA (1990)

    Google Scholar 

  138. Tielens, A.G.G.M.: Astrophys. J. 499, 267 (1998)

    Article  Google Scholar 

  139. Kemper, F., Vriend, W.J., Tielens, A.G.G.M.: Astrophys. J. 609, 826 (2004)

    Article  Google Scholar 

  140. Lin, D.N.C., Papaloizou, J.: On the dynamical origin of the solar nebula. In: Black, D.C., Matthews, M.S. (eds.) Protostars and Planets II, pp. 981–1072. University of Arizona Press, Tucson, AZ (1985)

    Google Scholar 

  141. Ruden, S.P., Lin, D.N.C.: Astrophys. J. 308, 883 (1986)

    Article  Google Scholar 

  142. Bell, K.R., Lin, D.N.C.: Astrophys. J. 427, 987 (1994)

    Article  Google Scholar 

  143. Bell, K.R., Cassen, P.M., Klahr, H.H., Henning, Th.: Astrophys. J. 486, 372 (1997)

    Article  Google Scholar 

  144. Huesco, R., Guillot, T.: Astron. Astrophys. 442, 703 (2005)

    Article  Google Scholar 

  145. Wehrstedt, M., Gail, H.-P.: Radial mixing in protoplanetary accretion disks VII. 2-dimensional transport of tracers. (arXiv:0804.3377v1) (2008)

    Google Scholar 

  146. Haisch, K.E., Jr., Lada, E.A., Lada, C.J.: Astrophys. J. Lett. 553, L153–L156 (2001)

    Article  Google Scholar 

  147. Kley, W., Lin, D.N.C.: Astrophys. J. 397, 600 (1992)

    Article  Google Scholar 

  148. Keller, Ch., Gail, H.-P.: Astron. Astrophys. 415, 1177 (2004)

    Article  Google Scholar 

  149. Tscharnuter, W.M., Gail, H.-P.: Astron. Astrophys. 463, 369 (2007)

    Article  Google Scholar 

  150. Urpin, V.A.: Sov. Astron. 28, 50 (1984)

    Google Scholar 

  151. Różyczka, M., Bodenheimer, P., Bell, K.R.: Astrophys. J. 423, 736 (1994)

    Article  Google Scholar 

  152. Regev, O., Gitelman, L.: Astron. Astrophys. 396, 623 (2002)

    Article  Google Scholar 

  153. Takeuchi, T., Lin, D.N.C.: Astrophys. J. 581, 1344 (2002)

    Article  Google Scholar 

  154. Ciesla, F.J.: Icarus 200, 655 (2009)

    Article  Google Scholar 

  155. Klahr, H.H.: Astrophys. J. 606, 1070 (2004)

    Article  Google Scholar 

  156. Johansen, A., Klahr, H.: Astrophys. J. 634, 1353 (2005)

    Article  Google Scholar 

  157. Turner, N.J., Willacy, K., Bryden, G., Yorke, H.W.: Astrophys. J. 639, 1218 (2006)

    Article  Google Scholar 

  158. Pavlyuchenkov, Y., Dullemond, C.P.: Astron. Astrophys. 471, 833 (2007)

    Article  Google Scholar 

  159. Morfill, G.E., Völk, H.-J.: Astrophys. J. 287, 371 (1984)

    Article  Google Scholar 

  160. Boss, A.P.: Astrophys. J. 616, 1265 (2004)

    Article  Google Scholar 

  161. Boss, A.P.: Earth Planet. Sci. Lett. 268, 102 (2008)

    Article  Google Scholar 

  162. Gail, H.-P.: Astron. Astrophys. 413, 571 (2004)

    Article  Google Scholar 

  163. Bockelée-Morvan, D., Gautier, D., Hersant, F., Huré, J.-M., Robert, F.: Astron. Astrophys. 384, 1107 (2002)

    Article  Google Scholar 

  164. Wooden, D.H., Harker, D.E., Woodward, C.E., Butner, H.M., Koike, C., Witteborn, F.C., McMurtry, C.W.: Astrophys. J. 517, 1034 (1999)

    Article  Google Scholar 

  165. Wooden, D.H., Butner, H.M., Harker, D.E., Woodward, C.E.: Icarus 143, 126 (2000)

    Article  Google Scholar 

  166. Scott, E.R.D., Barber, D.J., Alexander, C.M., Hutchinson, R., Peck, J.A.: Primitive material surviving in chondrites: matrix. In: Kerridge, J.F., Matthews, M.S. (eds.) Meteorites and the Early Solar System, pp. 718–745. University of Arizona Press, Tucson, AZ (1988)

    Google Scholar 

  167. Brearley, A.J., Scott, E.R.D., Keil, K., Clayton, R.N., Mayeda, T.K., Boynton, W.V., Hill, D.H.: Geochim. Cosmochim. Acta 53, 2081 (1989)

    Article  Google Scholar 

  168. Buseck, P.R., Hua, X.: Annu. Rev. Earth Planet. Sci. 21, 255 (1993)

    Article  Google Scholar 

  169. Fegley, B., Jr., Prinn, R.G.: Solar nebula chemistry: implications for volatiles in the solar system. In: Weaver, H.A., Danly, L. (eds.) The Formation and Evolution of Planetary Systems, pp. 171–205. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  170. Fegley, B., Jr.: Space Sci. Rev. 92, 177 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been performed as part of the projects of the special research programmes SFB 359“Reactive flows, diffusion and transport” and SFB 439 “Galaxies in the Young Universe” and the Forschergruppe 759 “The formation of planets. The critical first growth phase” which are supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-P. Gail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Gail, HP. (2010). Formation and Evolution of Minerals in Accretion Disks and Stellar Outflows. In: Henning, T. (eds) Astromineralogy. Lecture Notes in Physics, vol 815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13259-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13259-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13258-2

  • Online ISBN: 978-3-642-13259-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics