Skip to main content

Intelligent Power System Frequency Regulations Concerning the Integration of Wind Power Units

  • Chapter
Book cover Wind Power Systems

Part of the book series: Green Energy and Technology ((GREEN,volume 0))

Abstract

As the use of wind power turbines increases worldwide, there is a rising interest on their impacts on power system operation and control. Frequency regulation in interconnected networks is one of the main challenges posed by wind turbines in modern power systems. The wind power fluctuation negatively contributes to the power imbalance and frequency deviation. Significant interconnection frequency deviations can cause under/over frequency relaying and disconnect some loads and generations. Under unfavorable conditions, this may result in a cascading failure and system collapse.

This chapter presents an overview of the key issues on frequency regulation concerning the integration of wind power units into the power systems. Following a brief survey on the recent developments, the impact of power fluctuation produced by wind units on system frequency performance is presented. An updated frequency response model is introduced, and the inertia contribution of wind turbine in the overall system inertia is properly considered. The need for the revising of frequency performance standards is emphasized, and an intelligent agent based load frequency control (LFC), using multi-agent reinforcement learning (MARL) is proposed. Finally, nonlinear time-domain simulations on a 39-bus test power system are used to demonstrate the capability of the proposed control structure, and to analyze the system frequency performance in the presence of high wind power penetration and associated issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbey, C., et al.: Transient Modeling and Comparison of Wind Generator Topologies. In: IPST 2005, p. IPST05 - 131 (2005) (in Canada)

    Google Scholar 

  2. Abe, K., Ohba, S., Iwamoto, S.: New load frequency control method suitable for large penetration of wind power generations. In: Power Engineering Society General Meeting (2006)

    Google Scholar 

  3. Ahamed, T.P.I.: A neural network based automatic generation controller design through reinforcement learning. International Journal of Emerging Electric Power Systems 6 (2006)

    Google Scholar 

  4. Ahamed, T.P.I., Rao, P.S.N., Sastry, P.S.: A reinforcement learning approach to automatic generation control. Electric Power Systems Research 63, 9–26 (2002)

    Article  Google Scholar 

  5. Ahamed, T.P.I., Rao, P.S.N., Sastry, P.S.: Reinforcement learning controllers for automatic generation control in power systems having reheat units with GRC and dead-band. International journal of power and energy systems 26, 137–146 (2006)

    Article  Google Scholar 

  6. Anderson, P.M.: Power System Protection. IEEE/Wiley, New York (1999)

    Google Scholar 

  7. Atic, N., Feliachi, A., Rerkpreedapong, D.: CPS1 and CPS2 compliant wedge-shaped model predictive load frequency control. In: Power engineering society general meeting, vol. 1, pp. 855–860. IEEE, Los Alamitos (2004)

    Google Scholar 

  8. Banakar, H., Luo, C., Teck Ooi, B.: Impacts of wind power minute-to-minute variations on power system operation. IEEE Transactions on Power Systems 23, 150–160 (2008)

    Article  Google Scholar 

  9. Bevrani, H., Hiyama, T.: On load-frequency regulation with time delays: design and real-time implementation. IEEE Transaction on Energy Conversion 24, 292–300 (2009)

    Article  Google Scholar 

  10. Bevrani, H., Hiyama, T.: Robust load-frequency regulation: a real-time laboratory experiment. Optimal Control Appl. Methods 28, 419–433 (2007)

    Article  MathSciNet  Google Scholar 

  11. Bevrani, H.: Robust power system frequency control, 1st edn. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  12. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multi-agent reinforcement learning. IEEE Transaction on Syst., Man., Cyber., Part C: Applications and Reviews 38, 156–172 (2008)

    Article  Google Scholar 

  13. Chedid, R.B., Karaki, S.H., El-Chamali, C.: Adaptive fuzzy control for wind-diesel weak power systems. IEEE Transactions on Energy Conversion 15, 71–78 (2000)

    Article  Google Scholar 

  14. Demiroren, A., Zeynelgil, H.L., Sengor, N.S.: Automatic generation control for power system with SMES by using neural network controller. Electr. Power Comp System 31, 1–25 (2003)

    Article  Google Scholar 

  15. Dokopoulos, P.S., Saramourtsis, A.C., Bakirtzis, A.G.: Prediction and evaluation of the performance of wind-diesel energy systems. IEEE Transactions on Energy Conversion 11, 385–393 (1996)

    Article  Google Scholar 

  16. Eftekharnejad, S., Feliachi, A.: Stability enhancement through reinforcement learning: load frequency control case study. Bulk Power System Dynamics and Control VII, 1–8 (2007)

    Google Scholar 

  17. Ernst, D., Glavic, M., Wehenkel, L.: Power system stability control: reinforcement learning framework. IEEE Transaction on Power System 19, 427–436 (2004)

    Article  Google Scholar 

  18. Gjengedal, T.: System control of large scale wind power by use of automatic generation control (AGC). In: CIGRE/PES, 15–21 (2003)

    Google Scholar 

  19. Hall, D.J., Colclaser, R.G.: Transient modeling and simulation of a tubular solid oxide fuel cell. IEEE Transactions on Energy Conversion 14, 749–753 (1999)

    Article  Google Scholar 

  20. Hiyama, T., Zuo, D., Funabashi, T.: Multi-agent based automatic generation control of isolated stand alone power system. In: International conference on power system technology (2002)

    Google Scholar 

  21. Hiyama, T., Zuo, D., Funabashi, T.: Multi-agent based control and operation of distribution system with dispersed power sources. In: Transmission and Distribution Conference and Exhibition, Asia Pacific. IEEE/PES (2002)

    Google Scholar 

  22. Holttinen, H.: Impact of hourly wind power variation on the system operation in the Nordic Countries. Wind Energy 8(2), 197–218 (2005)

    Article  Google Scholar 

  23. Horiuchi, N., Kawahito, T., Sizuki, T.: Power control of induction generator by V/F control for wind energy conversion system. Transactions of IEEJ 118-B, 1170–1176 (1998)

    Google Scholar 

  24. Karnavas, Y.L., Papadopoulos, D.P.: AGC for autonomous power system using combined intelligent techniques. Electric power systems research 62, 225–239 (2002)

    Article  Google Scholar 

  25. Kodama, N., Matsuzaka, T., Inomata, N.: The power variation control of a wind generator by using probabilistic optimal control. Transactions of IEEJ 121-B, 22–30 (2001)

    Google Scholar 

  26. Lalor, G., Mullane, A., O’Malley, M.: Frequency control and wind turbine technologies. IEEE Transaction on Power System 20, 1905–1913 (2005)

    Article  Google Scholar 

  27. Lalor, G., Ritchie, J., Rourke, S., Flynn, D., O’Malley, M.J.: Dynamic frequency control with increasing wind generation. In: Power Engineering Society General Meeting (2004)

    Google Scholar 

  28. Lalor, G., et al.: Frequency control and wind turbine technologies. IEEE Transaction on Power System 20, 1905–1913 (2005)

    Article  Google Scholar 

  29. Lindgren, E., Söder, L.: Minimizing regulation costs in multi-area systems with uncertain wind power forecasts. Wind Energy-Wiley Inter-science 11, 97–108 (2007)

    Google Scholar 

  30. Lukas, M.D., Lee, K.Y., Ghezel-Ayagh, H.: Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant. IEEE Transactions on Energy Conversion 14, 1651–1657 (1999)

    Article  Google Scholar 

  31. Luo Far, C., Banakar, H.G., Pin-Kwan Keung, H., Ooi, B.T.: Estimation of Wind Penetration as Limited by Frequency Deviation. In: Power Engineering Society General Meeting (2006)

    Google Scholar 

  32. Morren, J., de Haan, S.W.H., Kling, W.L., Ferreira, J.A.: Primary power/frequency control with wind turbines and fuel cells. In: Power Engineering Society General Meeting (2006)

    Google Scholar 

  33. Morren, J., de Haan, S.W.H., Kling, W.L., Ferreira, J.A.: Wind turbines emulating inertia and supporting primary frequency control. IEEE Transactions on Power System 21, 433–434 (2006)

    Article  Google Scholar 

  34. Mullane, A.P.: Advanced control of wind energy conversion systems. Ph.D. dissertation, Nat. University of Ireland, Univ. College Cork, Cork, Ireland (2004)

    Google Scholar 

  35. Mullane, A., O’Malley, M.: The inertial-response of induction-machine based wind-turbines. IEEE Transaction on Power System 20, 1496–1503 (2005)

    Article  Google Scholar 

  36. Sathyajith, M.: Wind Energy Fundamentals, Resource Analysis and Economics, 1st edn., pp. 112–114. Springer, Heidelberg (2006)

    Google Scholar 

  37. Senjyu, T., Hayashi, D., Urasaki, N., Funabashi, T.: Oscillation frequency control based on H∞ controller for a small power system using renewable energy facilities in isolated island. In: Power Engineering Society General Meeting (2006)

    Google Scholar 

  38. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  39. Thathachar, M.A.L., Harita, B.R.: An estimator algorithm for learning automata with changing number of actions. International Journal of General Systems 14, 169–184 (1988)

    Article  MathSciNet  Google Scholar 

  40. The United Nations Framework Convention on Climate Change, The Kyoto Protocol (1997), http://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed June 28, 2008)

  41. Vittal, E., et al.: Varying Penetration Ratios of Wind Turbine Technologies for Voltage and Frequency Stability. In: Power and Engineering Society General Meeting, vol. 20, pp. 1–6 (2008)

    Google Scholar 

  42. Vlassis, N.: A concise introduction to multi-agent systems and distributed AI. Fac. Sci. Univ. Amsterdam, Amsterdam, The Netherlands, Tech. Rep. (2003)

    Google Scholar 

  43. Weiss, G. (ed.): Multi-agent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  44. Wooldridge, M., Weiss, G. (eds.): Intelligent agents, in multi-agent systems, pp. 3–51. MIT Press, Cambridge (1999)

    Google Scholar 

  45. Du, X., Li, P.: Fuzzy logic control optimal realization using GA for multi-area AGC systems. International Journal of Information Technology 12, 63–72 (2006)

    Google Scholar 

  46. Gu, Y.: Multi-agent reinforcement learning for multi-robot systems: a survey. Technical Report, CSM-404 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bevrani, H., Daneshfar, F., Daneshmand, R.P. (2010). Intelligent Power System Frequency Regulations Concerning the Integration of Wind Power Units. In: Wang, L., Singh, C., Kusiak, A. (eds) Wind Power Systems. Green Energy and Technology, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13250-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13250-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13249-0

  • Online ISBN: 978-3-642-13250-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics