A Model for Temperature Prediction of Melted Steel in the Electric Arc Furnace (EAF)

  • Marcin Blachnik
  • Krystian Mączka
  • Tadeusz Wieczorek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6114)


A constant aspiration to optimize electric arc steelmaking process causes an increase of the use of advanced analytical methods for the process support. The goal of the paper is to present the way to predict temperature of melted steel in the electric arc furnace and consequently, to reduce the number of temperature measurements during the process. Reducing the number of temperature measurements shortens the time of the whole process and allows increasing production.


Mean Square Error Liquid Steel Temperature Prediction Programmable Logic Controller Metal Scrap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wieczorek, T., Blachnik, M., Mączka, K.: Modelowanie procesu roztapiania złomu w piecu łukowym z wykorzystaniem sieci neuronowych i algorytmów SVM. In: Grosman, F., Hyrcza-Michalska, M. (eds.) Informatyka w technologii metali, pp. 161–168. Wydawnictwo Naukowe Akapit, Kraków (2008)Google Scholar
  2. 2.
    Wieczorek, T., Mązka, K.: Modeling of the AC-EAF process using computational intelligence methods. Electrotechnical Review 11, 184–188 (2008)Google Scholar
  3. 3.
    Wieczorek, T., Blachnik, M., Ma̧czka, K.: Building a model for time reduction of steel scrap meltdown in the electric arc furnace (EAF): General strategy with a comparison of feature selection methods. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Wieczorek, T., Pilarczyk, M.: Classification of steel scrap in the EAF process using image analysis methods. Archives of Metallurgy and Materials 53(2), 613–618 (2008)Google Scholar
  5. 5.
    Millman, M.S., Nyssen, P., Mathy, C., Tolazzi, D., Londero, L., Candusso, C., Baumert, J.C., Brimmeyer, M., Gualtieri, D., Rigoni, D.: Direct observation of the melting process in an eaf with a closed slag door. Archives of Metallurgy and Materials 53(2), 463–468 (2008)Google Scholar
  6. 6.
    Kendall, M., Thys, M., Horrex, A., Verhoeven, J.P.: A window into the electric arc furnace, a continuous temperature sensor measuring the complete furnace cycle. Archives of Metallurgy and Materials 53(2), 451–454 (2008)Google Scholar
  7. 7.
    Schölkopf, B., Smola, A.: Learning with Kernels. In: Support Vector Machines, Regulari-zation, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  8. 8.
    Gerling, R., Louis, T., Schmeiduch, G., Sesselmann, R., Sieber, A.: Optimizing the melting process at AC-EAF with neural networks. Metall. Jg. 53(7-8), 410–418 (1999)Google Scholar
  9. 9.
    Pappe, T., Obradovic, D., Schlang, M.: Neural networks: reducing energy and raw materials requirements. Simens Review, 24–27 (Fall 1995)Google Scholar
  10. 10.
    Baumert, J.-C., Engel, R., Weiler, C.: Dynamic modeling of the electric arc furnace process using artificial neural networks. In: La Revue de Metallurgie-CIT, vol. 10, pp. 839–849 (2002)Google Scholar
  11. 11.
    Boulet, B., Lalli, G., Ajersch, M.: Modeling and control of an electric arc furnace. In: Proc. of the American Control Conf., Denver, Colorado, pp. 3060–3064. IEEE Press, Los Alamitos (2003)Google Scholar
  12. 12.
    Gao, X., Li, S., Chai, T., Shao, C., Wang, X.: Set point intelligent optimal control of electric arc furnace. In: Proc. of 2nd Asian Control Conf., Seul, pp. 763–766 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcin Blachnik
    • 1
  • Krystian Mączka
    • 1
  • Tadeusz Wieczorek
    • 1
  1. 1.Department of Management and Computer ScienceSilesian University of TechnologyKatowicePoland

Personalised recommendations