Advertisement

RSIE: A Tool Dedicated to Reflexive Systems

  • Yann Barloy
  • Jean-Marc Nigro
  • Sophie Loriette
  • Baptiste Cable
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6114)

Abstract

This article deals with how metaknowledge can improve rule-based system and presents a new Reflexive System Inference Engine (RSIE) which enables not only the activation of rules, but also metarules, making it belong to systems managing metaknowledge. The experimentation section shows a rule-based system named IDRES with a structure which has been modified to use metaknowledge.

Keywords

Inference Engine Reflexive Systems Metaknowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayes, P.: Computation and deduction. In: Symposium on Mathematical Foundations of Computer Science, pp. 105–118 (1973)Google Scholar
  2. 2.
    Pitrat, J.: An intelligent system must and can observe its own behviour. In: Cognitiva 1990 (1990)Google Scholar
  3. 3.
    Genesereth, M., Nilsson, N.: Logical Fundations of Artificial Intelligence. Morgan Kaufmann, CA (1987)Google Scholar
  4. 4.
    Barloy, Y., Nigro, J.: Rsie: An inference engine for reflexive systems. In: Applications and Innovations in Intelligents Systems XV, pp. 315–320 (2007)Google Scholar
  5. 5.
    Clancey, W.: Model construction operators. Artificial Intelligence 53, 1–115 (1992)CrossRefGoogle Scholar
  6. 6.
    Torsun, I.: Foundation of Intelligent Knowledge-Based Systems. Academic Press, London (1995)Google Scholar
  7. 7.
    Laurière, J.: Snark: a langage to represent declarative knowledge and inference engine which use heuristics. In: Information Processing 1986, pp. 811–816. Elsevier Publisher, Amsterdam (1986)Google Scholar
  8. 8.
    Spreeuwenberg, S., Gerrits, R., Boekenoogen, M.: Valens: A knowledge based tool to validate and verify an aion knowledge base. In: ECAI 2000, pp. 731–735 (2000)Google Scholar
  9. 9.
    Cazenave, T.: Metarules to improve tactical go knowledge. Information Sciences 154(3-4), 173–188 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19 (1982)Google Scholar
  11. 11.
    Nigro, J., Barloy, Y.: The meta inference engine: a tool to use metaknowledge. In: IPMU 2006 (2006)Google Scholar
  12. 12.
    Kornman, S.: Infinite regress with self-monitoring. In: Reflection 1996 Conference, San Francisco, pp. 221–233 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yann Barloy
    • 1
  • Jean-Marc Nigro
    • 1
  • Sophie Loriette
    • 1
  • Baptiste Cable
    • 1
  1. 1.Charles Delaunay Institute - UTTTroyesFrance

Personalised recommendations