Approximate Neural Economic Set-Point Optimisation for Control Systems

  • Maciej Ławryńczuk
  • Piotr Tatjewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6114)


This paper describes a neural approach to economic set-point optimisation which cooperates with Model Predictive Control (MPC) algorithms. Because of high computational complexity, nonlinear economic optimisation cannot be repeated frequently on-line. Alternatively, an additional steady-state target optimisation based on a linear or a linearised model and repeated as often as MPC is usually used. Unfortunately, in some cases such an approach results in constraint violation and numerical problems. The approximate neural set-point optimiser replaces the whole nonlinear economic set-point optimisation layer.


Process control set-point optimisation Model Predictive Control neural networks optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blevins, T.L., Mcmillan, G.K., Wojsznis, M.W.: Advanced control unleashed. ISA (2003)Google Scholar
  2. 2.
    Brdys, M., Tatjewski, P.: Iterative algorithms for multilayer optimizing control. Imperial College Press, London (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Findeisen, W.M., Bailey, F.N., Brdyś, M., Malinowski, K., Tatjewski, P., Woźniak, A.: Control and coordination in hierarchical systems. J. Wiley and Sons, Chichester (1980)zbMATHGoogle Scholar
  4. 4.
    Haykin, S.: Neural networks – a comprehensive foundation. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  5. 5.
    Kassmann, D.E., Badgwell, T.A., Hawkins, R.B.: Robust steady-state target calculation for model predictive control. AIChE Journal 46, 1007–1024 (2000)CrossRefGoogle Scholar
  6. 6.
    Ławryńczuk, M., Marusak, P., Tatjewski, P.: Piecewise linear steady-state target optimization for control systems with MPC: a case study. In: The 17th IFAC World Congress, Seoul, South Korea, DVD-ROM, paper 3204, pp. 13169–13174 (2008)Google Scholar
  7. 7.
    Ławryńczuk, M., Marusak, P., Tatjewski, P.: Cooperation of model predictive control with steady-state economic optimisation. Control and Cybernetics 37, 133–158 (2008)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Ławryńczuk, M.: Neural models in computationally efficient predictive control cooperating with economic optimisation. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 650–659. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Maciejowski, J.M.: Predictive control with constraints. Prentice-Hall, Harlow (2002)Google Scholar
  10. 10.
    Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11, 733–764 (2003)CrossRefGoogle Scholar
  11. 11.
    Soroush, M., Valluri, S., Nehranbod, N.: Nonlinear control of input-constrained systems. Computers and Chemical Engineering 30, 158–181 (2005)CrossRefGoogle Scholar
  12. 12.
    Tatjewski, P.: Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control 32, 71–85 (2008)CrossRefGoogle Scholar
  13. 13.
    Tatjewski, P.: Advanced control of industrial processes, Structures and algorithms. Springer, London (2007)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maciej Ławryńczuk
    • 1
  • Piotr Tatjewski
    • 1
  1. 1.Institute of Control and Computation EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations