Ant Agents with Distributed Knowledge Applied to Adaptive Control of a Nonstationary Traffic in Ad-Hoc Networks

  • Michal Kudelski
  • Andrzej Pacut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6114)


We analyze a SWARM-based multi agent control scheme for controlling the traffic of data packets in ad-hoc networks. We consider nonstationary traffic patterns. We demonstrate how the distributed and geographically localized knowledge gathered by ant agents may improve the effectiveness of the ant learning mechanism. Our experiments indicate the improvement of adaptation capabilities of ants under dynamic topology changes and dynamic load level changes in the network.


Mobile Robot Data Packet Load Level Sine Wave Sudden Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abolhasan, M., Wysocki, T., Dutkiewicz, E.: A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks 2(1), 1–22 (2004)CrossRefGoogle Scholar
  2. 2.
    El-Nabiali, T.H.A., Ahmed, A.: Modeling and simulation of a routing protocol for ad-hoc networks combining queuing network analysis and ant colony algorithms. PhD thesis, Universität Duisburg-Essen (2005)Google Scholar
  3. 3.
    Di Caro, G., Ducatelle, F., Gambardella, L.M.: Anthocnet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks. European Transactions on Telecommunications 16, 443–455 (2005)CrossRefGoogle Scholar
  4. 4.
    Hong, X., Xu, K., Gerla, M., Angeles, L.C.A.: Scalable routing protocols for mobile ad hoc networks. IEEE network 16(4), 11–21 (2002)CrossRefGoogle Scholar
  5. 5.
    Kalaavathi, B., Madhavi, S., VijayaRagavan, S., Duraiswamy, K.: Review of ant based routing protocols for manet. In: International Conference on Computing, Communication and Networking, ICCCN 2008, December 2008, pp. 1–9 (2008)Google Scholar
  6. 6.
    Kudelski, M., Gadomska-Kudelska, M., Pacut, A.: Geographical cells routing in ad-hoc networks of mobile robots. In: The 14th IEEE Mediterranean Electrotechnical Conference, MELECON 2008, May 2008, pp. 374–379 (2008)Google Scholar
  7. 7.
    Kudelski, M., Pacut, A.: Geographical cells: Location-aware adaptive routing scheme for ad-hoc networks. In: EUROCON, 2007. The International Conference on “Computer as a Tool”, September 2007, pp. 649–656 (2007)Google Scholar
  8. 8.
    Kudelski, M., Pacut, A.: Learning methods in ad-hoc networks: a review. Evolutionary Computation and Global Optimization, Prace Naukowe Politechniki Warszawskiej, Elektronika z. 160, 153–163 (2007)Google Scholar
  9. 9.
    Kudelski, M., Pacut, A.: Ant routing with distributed geographical localization of knowledge in ad-hoc networks. In: EvoWorkshops 2009: Proceedings of the EvoWorkshops 2009 on Applications of Evolutionary Computing, pp. 111–116. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    ns2. The network simulator,
  11. 11.
    Pacut, A., Gadomska-Kudelska, M., Igielski, A.: Ant-routing vs. q-routing in telecommunication networks. In: 20th European Conference on Modelling and Simulation, ECMS, pp. 67–72 (2006)Google Scholar
  12. 12.
    Rajagopalan, S., Shen, C.-C.: Ansi: a swarm intelligence-based unicast routing protocol for hybrid ad hoc networks. J. Syst. Archit. 52(8), 485–504 (2006)CrossRefGoogle Scholar
  13. 13.
    Royer, E.M., Toh, C.-K.: A review of current routing protocols for ad hoc mobile wireless networks (1999)Google Scholar
  14. 14.
    Won, Y., Ahn, S.: Gop arima: Modeling the nonstationarity of vbr processes. Multimedia Systems 10(5), 359–378 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michal Kudelski
    • 1
    • 2
  • Andrzej Pacut
    • 1
    • 2
  1. 1.Institute of Control and Computation EngineeringWarsaw Univ. of TechnologyWarsawPoland
  2. 2.NASKWarsawPoland

Personalised recommendations