Extending Genetic Programming to Evolve Perceptron-Like Learning Programs

  • Marcin Suchorzewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6114)


We extend genetic programming (GP) with a local memory and vectorization to evolve simple, perceptron-like programs capable of learning by error correction. The local memory allows for a scalar value or vector to be stored and manipulated within a local scope of GP tree. Vectorization consists in grouping input variables and processing them as vectors. We demonstrate these extensions, along with an island model, allow to evolve general perceptron-like programs, i.e. working for any number of inputs. This is unlike in standard GP, where inputs are represented explicitly as scalars, so that scaling up the problem would require to evolve a new solution. Moreover, we find vectorization allows to represent programs more compactly and facilitates the evolutionary search.


Genetic programming evolutionary neural networks learning programs supervised learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Christensen, S., Oppacher, F.: An Analysis of Koza’s Computational Effort Statistic for Genetic Programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 182–191. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: From Architectures to Learning. Evolutionary Intelligence 1(1), 47–62 (2008)CrossRefGoogle Scholar
  3. 3.
    Koza, J.R.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann Pub., San Francisco (1999)zbMATHGoogle Scholar
  4. 4.
    Koza, J.R., Keane, M.A., Streeter, M.J.: What’s AI Done for Me Lately? Genetic Programming’s Human-Competitive Results. IEEE Intell. Syst., 25–31 (2003)Google Scholar
  5. 5.
    Miikkulainen, R.: Evolving Neural Networks. In: Proc. of the 2007 GECCO Conf. Comp. on Genetic and Evol. Comput., pp. 3415–3434. ACM, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Montana, D.J.: Strongly Typed Genetic Programming. Evolutionary Computation 3(2), 199–230 (1995)CrossRefGoogle Scholar
  7. 7.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Press (2008)Google Scholar
  8. 8.
    Teller, A.: Turing Completeness in the Language of Genetic Programming with Indexed Memory. In: Proc. of the 1994 IEEE World Congr. on Comput. Intell., vol. 1, pp. 136–141 (1994)Google Scholar
  9. 9.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  10. 10.
    Widrow, B., Lehr, M.A.: 30 Years of Adaptive Neural Networks: Perceptron, Madaline and Backpropagation. Proc. IEEE 78(9), 1415–1442 (1990)CrossRefGoogle Scholar
  11. 11.
    Woodward, J.R., Bai, R.: Why Evolution Is Not a Good Paradigm for Program Induction: A Critique of Genetic Programming. In: Proc. of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 593–600 (2009)Google Scholar
  12. 12.
    Yao, X.: Evolving Artificial Neural Networks. Proc. IEEE 87(9), 1423–1447 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcin Suchorzewski
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations