Skip to main content

Enhancing Elementary Flux Modes Analysis Using Filtering Techniques in an Integrated Environment

  • Conference paper
Advances in Bioinformatics

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 74))

  • 729 Accesses

Abstract

Elementary Flux Modes (EFMs) have been claimed as one of the most promising approaches for pathway analysis. These are a set of vectors that emerge from the stoichiometric matrix of a biochemical network through the use of convex analysis. The computation of all EFMs of a given network is an NP-hard problem and existing algorithms do not scale well. Moreover, the analysis of results is difficult given the thousands or millions of possible modes generated. In this work, we propose a new plugin, running on top of the OptFlux Metabolic Engineering workbench, whose aims are to ease the analysis of these results and explore synergies among EFM analysis, phenotype simulation and strain optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gagneur, J., Klamt, S.: Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 5(175) (2004)

    Google Scholar 

  2. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524 (2003)

    Article  Google Scholar 

  3. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003)

    Article  Google Scholar 

  4. Kitano, H., Funahashi, A., Matsuoka, Y., Oda, K.: Using process diagrams for the graphical representation of biological networks. Nature biotechnology 23(8), 961–966 (2005)

    Article  Google Scholar 

  5. Klamt, S., Saez-Rodriguez, J., Gilles, E.: Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Systems Biology 1(2) (2007)

    Google Scholar 

  6. Rocha, I., Maia, P., Evangelista, P., Vilaça, P., Soares, S., Pinto, J.P., Nielsen, J., Patil, K.R., Ferreira, E.C., Rocha, M.: Optflux: an open-source software platform for in silico metabolic engineering. BMC Systems Biology (in Press, 2010)

    Google Scholar 

  7. Schilling, C.H., Letscher, D., Palsson, B.Ø.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology 203(3), 229–248 (2000)

    Article  Google Scholar 

  8. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2(2), 165–182 (1994)

    Article  Google Scholar 

  9. Schwarz, R., Liang, C., Kaleta, C., Kuhnel, M., Hoffmann, E., Kuznetsov, S., Hecker, M., Griffiths, G., Schuster, S., Dandekar, T.: Integrated network reconstruction, visualization and analysis using yanasquare. BMC Bioinformatics 8(313) (2007)

    Google Scholar 

  10. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences 99(23), 15112 (2002)

    Article  Google Scholar 

  11. Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proceedings of the National Academy of Sciences of the United States of America 102(21), 7695 (2005)

    Article  Google Scholar 

  12. Stephanopoulos, G., Aristidou, A.A., Nielsen, J.: Metabolic engineering principles and methodologies. Academic Press, San Diego (1998)

    Google Scholar 

  13. Szallasi, Z., Stelling, J., Periwal, V.: System modeling in cell biology: from concepts to nuts and bolts. MIT Press, Cambridge (2006)

    Google Scholar 

  14. Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19), 2229–2235 (2008)

    Article  Google Scholar 

  15. von Kamp, A., Schuster, S.: Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22(15), 1930–1931 (2006)

    Article  Google Scholar 

  16. Wagner, C.: Nullspace approach to determine the elementary modes of chemical reaction systems. J. Phys. Chem. B 108, 2425–2431 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maia, P., Pont, M., Tomb, JF., Rocha, I., Rocha, M. (2010). Enhancing Elementary Flux Modes Analysis Using Filtering Techniques in an Integrated Environment. In: Rocha, M.P., Riverola, F.F., Shatkay, H., Corchado, J.M. (eds) Advances in Bioinformatics. Advances in Intelligent and Soft Computing, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13214-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13214-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13213-1

  • Online ISBN: 978-3-642-13214-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics