Skip to main content

Activation Mechanisms for Organometallic Anticancer Complexes

  • Chapter
  • First Online:
Medicinal Organometallic Chemistry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 32))

Abstract

Organometallic complexes offer potential for design as anticancer drugs. They can act as inert scaffolds and specifically inhibit enzymes such as kinases, or as pro-drugs which undergo activation by various mechanisms. The activation of metallocenes, arene, alkyl or aryl complexes by hydrolysis, and metal- or ligand-based redox reactions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fish RH, Jaouen G (2003) Bioorganometallic chemistry: structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics 22:2166–2177

    CAS  Google Scholar 

  2. Toney JH, Marks TJ (1985) Hydrolysis chemistry of the metallocene dichlorides M(η5-C5H5)2Cl2, M = titanium, vanadium, or zirconium. Aqueous kinetics, equilibria, and mechanistic implications for a new class of antitumor agents. J Am Chem Soc 107:947–953

    CAS  Google Scholar 

  3. Mokdsi G, Harding MM (1998) Water soluble, hydrolytically stable derivatives of the antitumor drug titanocene dichloride and binding studies with nucleotides. J Organomet Chem 565:29–35

    CAS  Google Scholar 

  4. Sadler PJ (1991) Inorganic chemistry and drug design. Adv Inorg Chem 36:1–48

    CAS  Google Scholar 

  5. Gianferrara T, Bratsos I, Alessio E (2009) A categorization of metal anticancer compounds based on their mode of action. Dalton Trans 37:7588–7598

    Google Scholar 

  6. Köpf H, Köpf-Maier P (1979) Titanocene dichloride – the first metallocene with cancerostatic activity. Angew Chem Int Ed 18:477–478

    Google Scholar 

  7. Köpf-Maier P (1994) Complexes of metals other than platinum as antitumor agents. Eur J Clin Pharmacol 47:1–16

    Google Scholar 

  8. Korfel A, Scheulen ME, Schmoll H-J, Grundel O, Harstrick A, Knoche M, Fels LM, Skorzec M, Bach F, Baumgart J, Sass G, Seeber S, Thiel E, Berdel WE (1998) Phase I clinical and pharmacokinetic study of titanocene dichloride in adults with advanced solid tumors. Clin Cancer Res 4:2701–2708

    CAS  Google Scholar 

  9. Christodoulou CV, Ferry DR, Fyfe DW, Young A, Doran J, Sheehan TMT, Eliopoulos A, Hale K, Baumgart J, Sass G, Kerr DJ (1998) Phase I trial of weekly scheduling and pharmacokinetics of titanocene dichloride in patients with advanced cancer. J Clin Oncol 16:2761–2769

    CAS  Google Scholar 

  10. Köpf-Maier P (1990) Intracellular localization of titanium within xenografted sensitive human tumors after treatment with the antitumor agent titanocene dichloride. J Struct Biol 105:35–45

    Google Scholar 

  11. Köpf-Maier P, Köpf H (1994) Organometallic titanium, vanadium, niobium, molybdenum and rhenium complexes – early transition metal antitumor drugs. In: Fricker SP (ed) Metal Compounds in Cancer Therapy. Chapman & Hall, London, pp 109–146

    Google Scholar 

  12. Christodoulou CV, Eliopoulos AG, Young LS, Hodgkins L, Ferry DR, Kerr DJ (1998) Anti-proliferative activity and mechanism of action of titanocene dichloride. Br J Cancer 77:2088–2097

    CAS  Google Scholar 

  13. Kuo LY, Liu AH, Marks TJ (1996) Metallocene interactions with DNA and DNA-processing enzymes. Met Ions Biol Syst 33:53–85

    CAS  Google Scholar 

  14. Köpf-Maier P, Krahl D (1981) In vitro treatment with metallocene dichlorides: determination of the intracellular distribution of the metal atoms by use of the electron energy loss spectroscopy. Cult Tech, Symp Prenatal Dev, 5th 509–517

    Google Scholar 

  15. Köpf-Maier P, Martin R (1989) Subcellular distribution of titanium in the liver after treatment with the antitumor agent titanocene dichloride. A study using electron spectroscopic imaging. Cell Pathol Inc Mol Pathol 57:213–222

    Google Scholar 

  16. Köpf-Maier P, Krahl D (1983) Tumor inhibition by metallocenes: ultrastructural localization of titanium and vanadium in treated tumor cells by electron energy loss spectroscopy. Chem Biol Interact 44:317–328

    Google Scholar 

  17. McLaughlin ML, Cronan JM Jr, Schaller TR, Snelling RD (1990) DNA-metal binding by antitumor-active metallocene dichlorides from inductively coupled plasma spectroscopy analysis: titanocene dichloride forms DNA-Cp2Ti or DNA-CpTi adducts depending on pH. J Am Chem Soc 112:8949–8952

    CAS  Google Scholar 

  18. Sun H, Li H, Weir RA, Sadler PJ (1998) The first specific TiIV-protein complex:potential relevance to anticancer activity of titanocenes. Angew Chem Int Ed Engl 37:1577–1579

    CAS  Google Scholar 

  19. Guo M, Sun H, McArdle HJ, Gambling L, Sadler PJ (2000) TiIV uptake and release by human serum transferrin and recognition of TiIV-transferrin by cancer cells: understanding the mechanism of action of the anticancer drug titanocene dichloride. Biochemistry 39:10023–10033

    CAS  Google Scholar 

  20. Harding MM, Mokdsi G (2000) Antitumor metallocenes: structure-activity studies and interactions with biomolecules. Curr Med Chem 7:1289–1303

    CAS  Google Scholar 

  21. Luemmen G, Sperling H, Luboldt H, Otto T, Ruebben H (1998) Phase II trial of titanocene dichloride in advanced renal-cell carcinoma. Cancer Chemother Pharmacol 42:415–417

    CAS  Google Scholar 

  22. Krögera N, Kleebergb UR, Mrossc K, Edlerd L, Saße G, Hossfeld DK (2000) Phase II clinical trial of titanocene dichloride in patients with metastatic breast cancer. Onkologie 23:60–62

    Google Scholar 

  23. Yang P, Guo M (1999) Interactions of organometallic anticancer agents with nucleotides and DNA. Coord Chem Rev 185–186:189–211

    Google Scholar 

  24. Köpf-Maier P, Köpf H (1987) Non-platinum group metal antitumor agents. History, current status, and perspectives. Chem Rev 87:1137–1152

    CAS  Google Scholar 

  25. Moebus VJ, Stein R, Kieback DG, Runnebaum IB, Sass G, Kreienberg R (1997) Antitumor activity of new organometallic compounds in human ovarian cancer cell lines and comparison to platin derivatives. Anticancer Res 17:815–821

    CAS  Google Scholar 

  26. Caruso F, Rossi M (2004) Antitumor titanium compounds and related metallocenes. In: Sigel H (ed) Metal Complexes in Tumor Diagnosis and as Anticancer Agents. CRC Press, USA, pp 353–384

    CAS  Google Scholar 

  27. Caruso F, Rossi M, Opazo C, Pettinari C (2005) Structural features of antitumor titanium agents and related compounds. Bioinorg Chem Appl 3:317–329

    CAS  Google Scholar 

  28. Sweeney NJ, Mendoza O, Mueller-Bunz H, Pampillon C, Rehmann F-JK, Strohfeldt K, Tacke M (2005) Novel benzyl substituted titanocene anti-cancer drugs. J Organomet Chem 690:4537–4544

    CAS  Google Scholar 

  29. Kelter G, Sweeney NJ, Strohfeldt K, Fiebig H-H, Tacke M (2005) In-vitro anti-tumor activity studies of bridged and unbridged benzyl-substituted titanocenes. Anticancer Drugs 16:1091–1098

    CAS  Google Scholar 

  30. Bannon JH, Fichtner I, O'Neill A, Pampillon C, Sweeney NJ, Strohfeldt K, Watson RW, Tacke M, Mc Gee MM (2007) Substituted titanocenes induce caspase-dependent apoptosis in human epidermoid carcinoma cells in vitro and exhibit antitumour activity in vivo. Br J Cancer 97:1234–1241

    CAS  Google Scholar 

  31. Dowling CM, Claffey J, Cuffe S, Fichtner I, Pampillon C, Sweeney NJ, Strohfeldt K, Watson RWG, Tacke M (2008) Antitumor activity of titanocene Y in xenografted PC3 tumors in mice. Lett Drug Des Discov 5:141–144

    CAS  Google Scholar 

  32. Claffey J, Hogan M, Muller-Bunz H, Pampillon C, Tacke M (2008) Oxali-titanocene Y: a potent anticancer drug. ChemMedChem 3:729–731

    CAS  Google Scholar 

  33. Fichtner I, Behrens D, Claffey J, Gleeson B, Hogan M, Wallis D, Weber H, Tacke M (2008) Antitumor activity of oxali-Titanocene Y in xenografted CAKI-1 tumors in mice. Lett Drug Des Discov 5:489–493

    CAS  Google Scholar 

  34. Allen OR, Gott AL, Hartley JA, Hartley JM, Knox RJ, McGowan PC (2007) Functionalized cyclopentadienyl titanium compounds as potential anticancer drugs. Dalton Trans 5082–5090

    Google Scholar 

  35. Kelman AD, Clarke MJ, Edmonds SD, Peresie HJ (1977) Biological activity of ruthenium purine complexes. J Clin Hematol Oncol 7:274–288

    CAS  Google Scholar 

  36. Clarke MJ (1980) Oncological implication of the chemistry of ruthenium. In: Sigel H (ed) Metal Complexes as Anticancer Agents. CRC Press, USA, pp 231–283

    CAS  Google Scholar 

  37. Mestroni G, Alessio E, Calligaris M, Attia WM, Quadrifoglio F, Cauci S, Sava G, Zorzet S, Pacor S (1989) Chemical, biological and antitumor properties of ruthenium(II) complexes with dimethyl sulfoxide. In: Alessio E, Clarke MJ (eds) Ruthenium and other non-platinum metal complexes in cancer chemotherapy. Springer-Verlag, Berlin, New York, pp 71–87

    Google Scholar 

  38. Dyson PJ, Sava G (2006) Metal-based antitumor drugs in the post genomic era. Dalton Trans 1929–1933

    Google Scholar 

  39. Alessio E, Mestroni G, Bergamo A, Sava G (2004) Ruthenium antimetastatic agents. Curr Top Med Chem 4:1525–1535

    CAS  Google Scholar 

  40. Alessio E, Mestroni G, Bergamo A, Sava G (2004) Ruthenium anticancer drugs. In: Sigel H (ed) Metal Complexes in Tumor Diagnosis and as Anticancer Agents. CRC Press, USA, pp 323–351

    CAS  Google Scholar 

  41. Bratsos I, Jedner S, Gianferrara T, Alessio E (2007) Ruthenium anticancer compounds: challenges and expectations. Chimia 61:692–697

    CAS  Google Scholar 

  42. Galanski M, Arion VB, Jakupec MA, Keppler BK (2003) Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des 9:2078–2089

    CAS  Google Scholar 

  43. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) From bench to bedside - preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem 100:891–904

    CAS  Google Scholar 

  44. Lentz F, Drescher A, Lindauer A, Henke M, Hilger RA, Hartinger CG, Scheulen ME, Dittrich C, Keppler BK, Jaehde U (2009) Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anti-Cancer Drugs 20:97–103

    CAS  Google Scholar 

  45. Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK (2008) KP1019, a new redox-active anticancer agent - preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5:2140–2155

    CAS  Google Scholar 

  46. Clarke MJ, Bitler S, Rennert D, Buchbinder M, Kelman AD (1980) Reduction and subsequent binding of ruthenium ions catalyzed by subcellular components. J Inorg Biochem 12:79–87

    CAS  Google Scholar 

  47. Arion VB, Reisner E, Fremuth M, Jakupec MA, Keppler BK, Kukushkin VY, Pombeiro AJL (2003) Synthesis, X-ray diffraction structures, spectroscopic properties, and in vitro antitumor activity of isomeric (1H–1, 2, 4-Triazole)Ru(III) complexes. Inorg Chem 42:6024–6031

    CAS  Google Scholar 

  48. Reisner E, Arion VB, Guedes da Silva MFC, Lichtenecker R, Eichinger A, Keppler BK, Kukushkin VY, Pombeiro AJL (2004) Tuning of redox potentials for the design of ruthenium anticancer drugs – an electrochemical study of [trans-RuCl4L(DMSO)] and [trans-RuCl4L2] complexes, where L = imidazole, 1, 2, 4-triazole, indazole. Inorg Chem 43:7083–7093

    CAS  Google Scholar 

  49. Jakupec MA, Reisner E, Eichinger A, Pongratz M, Arion VB, Galanski M, Hartinger CG, Keppler BK (2005) Redox-active antineoplastic ruthenium complexes with indazole: correlation of in vitro potency and reduction potential. J Med Chem 48:2831–2837

    CAS  Google Scholar 

  50. Brindell M, Stawoska I, Supel J, Skoczowski A, Stochel G, Eldik R (2008) The reduction of (ImH)[trans-RuIIICl4(dmso)(Im)] under physiological conditions: preferential reaction of the reduced complex with human serum albumin. J Biol Inorg Chem 13:909–918

    CAS  Google Scholar 

  51. Peacock AFA, Sadler PJ (2008) Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents. Chem Asian J 3:1890–1899

    CAS  Google Scholar 

  52. Dougan SJ, Melchart M, Habtemariam A, Parsons S, Sadler PJ (2006) Phenylazo-pyridine and phenylazo-pyrazole chlorido ruthenium(II) arene complexes: arene loss, aquation, and cancer cell cytotoxicity. Inorg Chem 45:10882–10894

    CAS  Google Scholar 

  53. Wang F, Habtemariam A, van der Geer EPL, Fernandez R, Melchart M, Deeth RJ, Aird R, Guichard S, Fabbiani FPA, Lozano-Casal P, Oswald IDH, Jodrell DI, Parsons S, Sadler PJ (2005) Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity. Proc Natl Acad Sci USA 102:18269–18274

    CAS  Google Scholar 

  54. Morris RE, Aird RE, Murdoch PdS, Chen H, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ (2001) Inhibition of cancer cell growth by ruthenium(II) arene complexes. J Med Chem 44:3616–3621

    CAS  Google Scholar 

  55. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2002) In vitro and in vivo activity and cross resistance profiles of novel ruthenium(II) organometallic arene complexes in human ovarian cancer. Br J Cancer 86:1652–1657

    CAS  Google Scholar 

  56. Melchart M, Sadler PJ (2006) Ruthenium arene anticancer complexes. In: Jaouen G (ed) Bioorganometallics. Wiley-VCH, Weinheim, pp 39–64

    Google Scholar 

  57. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Commun 4764–4776

    Google Scholar 

  58. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Redox behavior of tumor-inhibiting ruthenium(III) complexes and effects of physiological reductants on their binding to GMP. Dalton Trans 1796–1802

    Google Scholar 

  59. Peacock AFA, Habtemariam A, Fernandez R, Walland V, Fabbiani FPA, Parsons S, Aird RE, Jodrell DI, Sadler PJ (2006) Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions. J Am Chem Soc 128:1739–1748

    CAS  Google Scholar 

  60. Habtemariam A, Melchart M, Fernandez R, Parsons S, Oswald IDH, Parkin A, Fabbiani FPA, Davidson JE, Dawson A, Aird RE, Jodrell DI, Sadler PJ (2006) Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N, N-, N, O-, and O, O-chelating ligands. J Med Chem 49:6858–6868

    CAS  Google Scholar 

  61. Bugarcic T, Habtemariam A, Stepankova J, Heringova P, Kasparkova J, Deeth RJ, Johnstone RDL, Prescimone A, Parkin A, Parsons S, Brabec V, Sadler PJ (2008) The contrasting chemistry and cancer cell cytotoxicity of bipyridine and bipyridinediol ruthenium(II) arene complexes. Inorg Chem 47:11470–11486

    CAS  Google Scholar 

  62. Bugarcic T, Novakova O, Halamikova A, Zerzankova L, Vrana O, Kasparkova J, Habtemariam A, Parsons S, Sadler PJ, Brabec V (2008) Cytotoxicity, cellular uptake, and DNA interactions of new monodentate ruthenium(II) complexes containing terphenyl arenes. J Med Chem 51:5310–5319

    CAS  Google Scholar 

  63. Peacock AFA, Habtemariam A, Moggach SA, Prescimone A, Parsons S, Sadler PJ (2007) Chloro half-sandwich osmium(II) complexes: influence of chelated N, N-ligands on hydrolysis, guanine binding, and cytotoxicity. Inorg Chem 46:4049–4059

    CAS  Google Scholar 

  64. Peacock AFA, Parsons S, Sadler PJ (2007) Tuning the hydrolytic aqueous chemistry of osmium arene complexes with N,O-chelating ligands to achieve cancer cell cytotoxicity. J Am Chem Soc 129:3348–3357

    CAS  Google Scholar 

  65. Kostrhunova H, Florian J, Novakova O, Peacock AFA, Sadler PJ, Brabec V (2008) DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media. J Med Chem 51:3635–3643

    CAS  Google Scholar 

  66. van Rijt SH, Peacock AFA, Johnstone RDL, Parsons S, Sadler PJ (2009) Organometallic osmium(II) arene anticancer complexes containing picolinate derivatives. Inorg Chem 48:1753–1762

    Google Scholar 

  67. Grguric-Sipka S, Stepanenko IN, Lazic JM, Bartel C, Jakupec MA, Arion VB, Keppler BK (2009) Synthesis, x-ray diffraction structure, spectroscopic properties and antiproliferative activity of a novel ruthenium complex with constitutional similarity to cisplatin. Dalton Trans 3334–3339

    Google Scholar 

  68. Wang F, Chen H, Parsons S, Oswald IDH, Davidson JE, Sadler PJ (2003) Kinetics of aquation and anation of ruthenium(II) arene anticancer complexes, acidity and X-ray structures of aqua adducts. Chem Eur J 9:5810–5820

    CAS  Google Scholar 

  69. Fernandez R, Melchart M, Habtemariam A, Parsons S, Sadler PJ (2004) Use of chelating ligands to tune the reactive site of half-sandwich ruthenium(II)-arene anticancer complexes. Chem Eur J 10:5173–5179

    CAS  Google Scholar 

  70. Melchart M, Habtemariam A, Parsons S, Moggach SA, Sadler PJ (2006) Ruthenium(II) arene complexes containing four- and five-membered monoanionic O, O-chelate rings. Inorg Chim Acta 359:3020–3028

    CAS  Google Scholar 

  71. Jennerwein M, Andrews PA (1995) Effect of intracellular chloride on the cellular pharmacodynamics of cis-diamminedichloroplatinum(II). Drug Metab Dispos 23:178–184

    CAS  Google Scholar 

  72. Chen H, Parkinson JA, Morris RE, Sadler PJ (2003) Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms. J Am Chem Soc 125:173–186

    CAS  Google Scholar 

  73. Peacock AFA, Melchart M, Deeth RJ, Habtemariam A, Parsons S, Sadler PJ (2007) Osmium(II) and ruthenium(II) arene maltolato complexes: rapid hydrolysis and nucleobase binding. Chem Eur J 13:2601–2613

    CAS  Google Scholar 

  74. Allardyce CS, Dyson PJ (2001) The interactions of low oxidation state transition metal clusters with DNA: potential applications in cancer therapy. J Clust Sci 12:563–569

    CAS  Google Scholar 

  75. Dorcier A, Dyson PJ, Gossens C, Rothlisberger U, Scopelliti R, Tavernelli I (2005) Binding of organometallic ruthenium(II) and osmium(II) complexes to an oligonucleotide: a combined mass spectrometric and theoretical study. Organometallics 24:2114–2123

    CAS  Google Scholar 

  76. Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ (2005) In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J Med Chem 48:4161–4171

    CAS  Google Scholar 

  77. Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) [Ru(η6-p-cymene)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells. Chem Commun 1396–1397

    Google Scholar 

  78. Gossens C, Dorcier A, Dyson PJ, Rothlisberger U (2007) pKa estimation of ruthenium(II)-arene PTA complexes and their hydrolysis products via a DFT/continuum electrostatics approach. Organometallics 26:3969–3975

    CAS  Google Scholar 

  79. Ang WH, Daldini E, Scolaro C, Scopelliti R, Juillerat-Jeannerat L, Dyson PJ (2006) Development of organometallic ruthenium-arene anticancer drugs that resist hydrolysis. Inorg Chem 45:9006–9013

    CAS  Google Scholar 

  80. Berger I, Hanif M, Nazarov AA, Hartinger CG, John RO, Kuznetsov ML, Groessl M, Schmitt F, Zava O, Biba F, Arion VB, Galanski M, Jakupec MA, Juillerat-Jeanneret L, Dyson PJ, Keppler BK (2008) In vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands. Chem Eur J 14:9046–9057

    CAS  Google Scholar 

  81. Ang WH, Grote Z, Scopelliti R, Juillerat-Jeanneret L, Severin K, Dyson PJ (2009) Organometallic complexes that interconvert between trimeric and monomeric structures as a function of pH and their effect on human cancer and fibroblast cells. J Organomet Chem 694:968–972

    CAS  Google Scholar 

  82. Mendoza-Ferri M-G, Hartinger CG, Eichinger RE, Stolyarova N, Severin K, Jakupec MA, Nazarov AA, Keppler BK (2008) Influence of the spacer length on the in vitro anticancer activity of dinuclear ruthenium-arene compounds. Organometallics 27:2405–2407

    CAS  Google Scholar 

  83. Kandioller W, Hartinger CG, Nazarov AA, Kuznetsov ML, John RO, Bartel C, Jakupec MA, Arion VB, Keppler BK (2009) From pyrone to thiopyrone ligands-rendering maltol-derived ruthenium(II)-arene complexes that are anticancer active in vitro. Organometallics 28:4249–4251

    CAS  Google Scholar 

  84. Kandioller W, Hartinger CG, Nazarov AA, Bartel C, Skocic M, Jakupec MA, Arion VB, Keppler BK (2009) Maltol-derived ruthenium-cymene complexes with tumor inhibiting properties: the impact of ligand-metal bond stability on anticancer activity in vitro. Chem-Eur J 15:12283–12291

    CAS  Google Scholar 

  85. Kong KV, Leong WK, Ng SP, Nguyen TH, Lim LHK (2008) Osmium carbonyl clusters: a new class of apoptosis inducing agents. ChemMedChem 3:1269–1275

    CAS  Google Scholar 

  86. Novakova O, Chen H, Vrana O, Rodger A, Sadler PJ, Brabec V (2003) DNA interactions of monofunctional organometallic ruthenium(II) antitumor complexes in cell-free media. Biochemistry 42:11544–11554

    CAS  Google Scholar 

  87. Novakova O, Kasparkova J, Bursova V, Hofr C, Vojtiskova M, Chen H, Sadler PJ, Brabec V (2005) Conformation of DNA modified by monofunctional Ru(II) arene complexes: recognition by DNA binding proteins and repair. Relationship to cytotoxicity. Chem Biol 12:121–129

    CAS  Google Scholar 

  88. Dougan SJ, Sadler PJ (2007) The design of organometallic ruthenium arene anticancer agents. Chimia 61:704–715

    CAS  Google Scholar 

  89. Chen H, Parkinson JA, Parsons S, Coxall RA, Gould RO, Sadler PJ (2002) Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts. J Am Chem Soc 124:3064–3082

    CAS  Google Scholar 

  90. Chen H, Parkinson JA, Novakova O, Bella J, Wang F, Dawson A, Gould R, Parsons S, Brabec V, Sadler PJ (2003) Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers. Proc Natl Acad Sci USA 100:14623–14628

    CAS  Google Scholar 

  91. Wang F, Bella J, Parkinson JA, Sadler PJ (2005) Competitive reactions of a ruthenium arene anticancer complex with histidine, cytochrome c and an oligonucleotide. J Biol Inorg Chem 10:147–155

    CAS  Google Scholar 

  92. Liu H-K, Berners-Price SJ, Wang F, Parkinson JA, Xu J, Bella J, Sadler PJ (2006) Diversity in guanine-selective DNA binding modes for an organometallic ruthenium arene complex. Angew Chem Int Ed Engl 45:8153–8156

    CAS  Google Scholar 

  93. Liu LH-K, Wang F, Parkinson JA, Bella J, Sadler PJ (2006) Ruthenation of duplex and single-stranded d(CGGCCG) by organometallic anticancer complexes. Chem Eur J 12:6151–6165

    CAS  Google Scholar 

  94. Pizarro AM, Sadler PJ (2009) Unusual DNA binding modes for metal anticancer complexes. Biochimie 91:1198–1211

    CAS  Google Scholar 

  95. Gkionis K, Platts JA, Hill JG (2008) Insights into DNA binding of ruthenium arene complexes: role of hydrogen bonding and π stacking. Inorg Chem 47:3893–3902

    CAS  Google Scholar 

  96. Wang F, Xu J, Habtemariam A, Bella J, Sadler PJ (2005) Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: detection of a sulfenato intermediate. J Am Chem Soc 127:17734–17743

    CAS  Google Scholar 

  97. Wang F, Weidt S, Xu J, Mackay CL, Langridge-Smith PRR, Sadler PJ (2008) Identification of clusters from reactions of ruthenium arene anticancer complex with glutathione using nanoscale liquid chromatography fourier transform ion cyclotron mass spectrometry combined with 18O-labeling. J Am Soc Mass Spectrom 19:544–549

    CAS  Google Scholar 

  98. Hu W, Luo Q, Ma X, Wu K, Liu J, Chen Y, Xiong S, Wang J, Sadler PJ, Wang F (2009) Arene control over thiolate to sulfinate oxidation in albumin by organometallic ruthenium anticancer complexes. Chem Eur J 15:6586–6594

    CAS  Google Scholar 

  99. Claiborne A, Mallett TC, Yeh JI, Luba J, Parsonage D (2001) Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv Protein Chem 58:215–276

    CAS  Google Scholar 

  100. Petzold H, Xu J, Sadler PJ (2008) Metal and ligand control of sulfenate reactivity: arene ruthenium thiolato-mono-S-oxides. Angew Chem Int Ed 47:3008–3011

    CAS  Google Scholar 

  101. Kovacs JA (2004) Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Chem Rev 104:825–848

    CAS  Google Scholar 

  102. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ III, Charrier V, Parsonage D (1999) Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38:15407–15416

    CAS  Google Scholar 

  103. Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347

    CAS  Google Scholar 

  104. Sivaramakrishnan S, Keerthi K, Gates KS (2005) A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) Activity. J Am Chem Soc 127:10830–10831

    CAS  Google Scholar 

  105. Claiborne A, Miller H, Parsonage D, Ross RP (1993) Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. Faseb J 7:1483–1490

    CAS  Google Scholar 

  106. Jacob C, Holme AL, Fry FH (2004) The sulfinic acid switch in proteins. Org Biomol Chem 2:1953–1956

    CAS  Google Scholar 

  107. Carballal S, Alvarez B, Turell L, Botti H, Freeman BA, Radi R (2007) Sulfenic acid in human serum albumin. Amino Acids 32:543–551

    CAS  Google Scholar 

  108. Ishii A, Saito M, Murata M, Nakayama J (2002) Reaction between dithiirane 1-oxides and a platinum(0) complex. Eur J Org Chem 979–982

    Google Scholar 

  109. Wunsch R, Bosl G, Robl C, Weigand W (2001) Diastereoselective oxidative addition of cyclic thiosulfinates to platinum(0) compounds: chiral platinum(II) complexes with sulfenato ligands. Crystal structures of cyclo-S(O)CH2CH(OAc)CH(OAc)CH2S and dppePt[S(O)(CH2)4S]. Part 16. Metal complexes of functionalized sulfur-containing ligands. J Organomet Chem 621:352–358

    CAS  Google Scholar 

  110. O'Connor JM, Bunker KD, Rheingold AL, Zakharov L (2005) Sulfoxide carbon–sulfur bond activation. J Am Chem Soc 127:4180–4181

    Google Scholar 

  111. Darensbourg MY, Tuntulani T, Reibenspies JH (1995) Structure/function relationships in ligand-based SO2/O2 conversion to sulfate as promoted by nickel and palladium thiolates. Inorg Chem 34:6287–6294

    CAS  Google Scholar 

  112. Ishii A, Komiya K, Nakayama J (1996) Synthesis of a stable sulfenic acid by oxidation of a sterically hindered thiol (thiophenetriptycene-8-thiol) and its characterization. J Am Chem Soc 118:12836–12837

    CAS  Google Scholar 

  113. Heinrich L, Li Y, Vaissermann J, Chottard J-C (2001) A bis(carboxamido-N)diisocyanidobis(sulfenato-S)cobalt(III) complex, model for the post-translational oxygenation of nitrile hydratase thiolato ligands. Eur J Inorg Chem 1407–1409

    Google Scholar 

  114. Tuntulani T, Musie G, Reibenspies JH, Darensbourg MY (1995) Metallosulfoxides and -sulfones: sulfur oxygenates of [1, 5-Bis(2-mercaptoethyl)-1, 5-diazacyclooctanato]palladium(II). Inorg Chem 34:6279–6286

    CAS  Google Scholar 

  115. Petzold H, Sadler PJ (2008) Oxidation induced by the antioxidant glutathione (GSH). Chem Commun 4413–4415

    Google Scholar 

  116. Sriskandakumar T, Petzold H, Bruijnincx PCA, Habtemariam A, Sadler PJ, Kennepohl P (2009) Influence of oxygenation on the reactivity of ruthenium-thiolato bonds in arene anticancer complexes: insights from XAS and DFT. J Am Chem Soc 131:13355–13361

    CAS  Google Scholar 

  117. Melchart M, Habtemariam A, Novakova O, Moggach SA, Fabbiani FPA, Parsons S, Brabec V, Sadler PJ (2007) Bifunctional amine-tethered ruthenium(II) arene complexes form monofunctional adducts on DNA. Inorg Chem 46:8950–8962

    CAS  Google Scholar 

  118. Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99:2499–2510

    CAS  Google Scholar 

  119. Bugarcic T, Habtemariam A, Deeth RJ, Fabbiani FPA, Parsons S, Sadler PJ (2009) Ruthenium(II) arene anticancer complexes with redox-active diamine ligands. Inorg Chem 48:9444–9453

    CAS  Google Scholar 

  120. Weber W, Ford PC (1986) Photosubstitution reactions of the ruthenium(II) arene complexes Ru(η6-arene)L 2+3 (L = ammonia or water) in aqueous solution. Inorg Chem 25:1088–1092

    CAS  Google Scholar 

  121. Magennis SW, Habtemariam A, Novakova O, Henry JB, Meier S, Parsons S, Oswald IDH, Brabec V, Sadler PJ (2007) Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex. Inorg Chem 46:5059–5068

    CAS  Google Scholar 

  122. Betanzos-Lara S, Salassa L, Habtemariam A, Sadler PJ (2009) Photocontrolled nucleobase binding to an organometallic RuII arene complex. Chem Commun 6622–6624

    Google Scholar 

  123. Parish RV, Mack J, Hargreaves L, Wright JP, Buckley RG, Elsome AM, Fricker SP, Theobald BRC (1996) Chemical and biological reactions of diacetato[2-(dimethylaminomethyl)phenyl]gold(III), [Au(O2CMe)2(dmamp)]. Dalton Trans 69–74

    Google Scholar 

  124. Buckley RG, Elsome AM, Fricker SP, Henderson GR, Theobald BRC, Parish RV, Howe BP, Kelland LR (1996) Antitumor properties of some 2-[(Dimethylamino)methyl]phenylgold(III) complexes. J Med Chem 39:5208–5214

    CAS  Google Scholar 

  125. Parish RV (1999) Biologically-active gold(III) complexes. Met Based Drugs 6:271–276

    CAS  Google Scholar 

  126. Marcon G, Carotti S, Coronnello M, Messori L, Mini E, Orioli P, Mazzei T, Cinellu MA, Minghetti G (2002) Gold(III) complexes with bipyridyl ligands: solution chemistry, cytotoxicity, and DNA binding properties. J Med Chem 45:1672–1677

    CAS  Google Scholar 

  127. Messori L, Marcon G, Cinellu MA, Coronnello M, Mini E, Gabbiani C, Orioli P (2004) Solution chemistry and cytotoxic properties of novel organogold(III) compounds. Bioorg Med Chem 12:6039–6043

    CAS  Google Scholar 

  128. Hickey JL, Ruhayel RA, Barnard PJ, Baker MV, Berners-Price SJ, Filipovska A (2008) Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J Am Chem Soc 130:12570–12571

    CAS  Google Scholar 

  129. Lemke J, Pinto A, Niehoff P, Vasylyeva V, Metzler-Nolte N (2009) Synthesis, structural characterisation and anti-proliferative activity of NHC gold amino acid and peptide conjugates. Dalton Trans 7063–7070

    Google Scholar 

  130. Ruiz J, Cutillas N, Vicente C, Villa MD, Lopez G, Lorenzo J, Aviles FX, Moreno V, Bautista D (2005) New palladium(II) and platinum(II) complexes with the model nucleobase 1-methylcytosine: antitumor activity and interactions with DNA. Inorg Chem 44:7365–7376

    CAS  Google Scholar 

  131. Gay M, Montana AM, Moreno V, Prieto M-J, Perez JM, Alonso C (2006) Studies of interaction of trichloro{η2-cis-N, N-dimethyl-1-[6-(N', N'-dimethyl-ammoniummethyl)-cyclohex-3-ene-1-yl]-methylammonium}platinum(II) chloride with DNA: effects on secondary and tertiary structures of DNA. Cytotoxic assays on human ovarian cancer cell lines, resistant and non-resistant to cisplatin. Bioorg Med Chem 14:1565–1572

    CAS  Google Scholar 

  132. Ruiz J, Lorenzo J, Sanglas L, Cutillas N, Vicente C, Villa MD, Aviles FX, Lopez G, Moreno V, Perez J, Bautista D (2006) Palladium(II) and platinum(II) organometallic complexes with the model nucleobase anions of thymine, uracil, and cytosine: antitumor activity and interactions with DNA of the platinum compounds. Inorg Chem 45:6347–6360

    CAS  Google Scholar 

  133. Ruiz J, Villa MD, Cutillas N, Lopez G, de Haro C, Bautista D, Moreno V, Valencia L (2008) Palladium(II) and Platinum(II) Organometallic Complexes with 4, 7-dihydro-5-methyl-7-oxo[1, 2, 4]triazolo[1, 5-a]pyrimidine. Antitumor activity of the platinum compounds. Inorg Chem 47:4490–4505

    CAS  Google Scholar 

  134. Yan YK, Melchart M, Habtemariam A, Peacock AFA, Sadler PJ (2006) Catalysis of regioselective reduction of NAD+ by ruthenium(II) arene complexes under biologically relevant conditions. J Biol Inorg Chem 11:483–488

    CAS  Google Scholar 

  135. Lo HC, Leiva C, Buriez O, Kerr JB, Olmstead MM, Fish RH (2001) Bioorganometallic chemistry. 13. Regioselective reduction of NAD+ models, 1-benzylnicotinamide triflate and β-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H]+: structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Inorg Chem 40:6705–6716

    CAS  Google Scholar 

  136. Bruijnincx PCA, Habtemariam A, Sadler PJ. Unpublished results

    Google Scholar 

  137. Dougan SJ, Habtemariam A, McHale SE, Parsons S, Sadler PJ (2008) Catalytic organometallic anticancer complexes. Proc Natl Acad Sci USA 105:11628–11633

    CAS  Google Scholar 

  138. Nguyen A, Vessieres A, Hillard EA, Top S, Pigeon P, Jaouen G (2007) Ferrocifens and ferrocifenols as new potential weapons against breast cancer. Chimia 61:716–724

    CAS  Google Scholar 

  139. Hamels D, Dansette PM, Hillard EA, Top S, Vessieres A, Herson P, Jaouen G, Mansuy D (2009) Ferrocenyl quinone methides as strong antiproliferative agents: formation by metabolic and chemical oxidation of ferrocenyl phenols. Angew Chem Int Ed Engl 48:9124–9126

    CAS  Google Scholar 

  140. Pigeon P, Top S, Vessieres A, Huche M, Hillard EA, Salomon E, Jaouen G (2005) Selective estrogen receptor modulators in the ruthenocene series. Synthesis and biological behavior. J Med Chem 48:2814–2821

    CAS  Google Scholar 

  141. Pigeon P, Top S, Zekri O, Hillard EA, Vessieres A, Plamont M-A, Buriez O, Labbe E, Huche M, Boutamine S, Amatore C, Jaouen G (2009) The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1, 1-diphenyl-but-l-ene compounds against breast cancer cells. J Organomet Chem 694:895–901

    CAS  Google Scholar 

  142. Plazuk D, Vessieres A, Hillard EA, Buriez O, Labbe E, Pigeon P, Plamont M-A, Amatore C, Zakrzewski J, Jaouen G (2009) A [3]ferrocenophane polyphenol showing a remarkable antiproliferative activity on breast and prostate cancer cell lines. J Med Chem 52:4964–4967

    CAS  Google Scholar 

  143. Rajapakse CSK, Martinez A, Naoulou B, Jarzecki AA, Suarez L, Deregnaucourt C, Sinou V, Schrevel J, Musi E, Ambrosini G, Schwartz GK, Sanchez-Delgado RA (2009) Synthesis, characterization, and in vitro antimalarial and antitumor activity of new ruthenium(II) complexes of chloroquine. Inorg Chem 48:1122–1131

    CAS  Google Scholar 

  144. Ang WH, De Luca A, Chapuis-Bernasconi C, Juillerat-Jeanneret L, Lo Bello M, Dyson PJ (2007) Organometallic ruthenium inhibitors of glutathione-S-transferase P1-1 as anticancer drugs. ChemMedChem 2:1799–1806

    CAS  Google Scholar 

  145. Meggers E, Atilla-Gokcumen GE, Bregman H, Maksimoska J, Mulcahy SP, Pagano N, Williams DS (2007) Exploring chemical space with organometallics: ruthenium complexes as protein kinase inhibitors. Synlett 8:1177–1189

    Google Scholar 

  146. Bregman H, Carroll PJ, Meggers E (2006) Rapid access to unexplored chemical space by ligand scanning around a ruthenium center: discovery of potent and selective protein kinase inhibitors. J Am Chem Soc 128:877–884

    CAS  Google Scholar 

  147. Debreczeni JE, Bullock AN, Atilla GE, Williams DS, Bregman H, Knapp S, Meggers E (2006) Ruthenium half-sandwich complexes bound to protein kinase pim-1. Angew Chem Int Ed 45:1580–1585

    CAS  Google Scholar 

  148. Meggers E (2009) Targeting proteins with metal complexes. Chem Commun 1001–1010

    Google Scholar 

  149. Smalley Keiran SM, Contractor R, Haass Nikolas K, Kulp Angela N, Atilla-Gokcumen GE, Williams Douglas S, Bregman H, Flaherty Keith T, Soengas Maria S, Meggers E, Herlyn M (2007) An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res 67:209–217

    CAS  Google Scholar 

  150. Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R, Meggers E (2008) Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc 130:15764–15765

    CAS  Google Scholar 

  151. Maksomiska J, Williams DS, Atilla-Gokcumen GE, Smalley KSM, Carroll PJ, Webster RD, Filippakopoulos P, Knapp S, Herlyn M, Meggers E (2008) Similar biological activities of two isostructural ruthenium and osmium complexes. Chem-Eur J 14:4816–4822

    CAS  Google Scholar 

  152. Schmid WF, John RO, Muehlgassner G, Heffeter P, Jakupec MA, Galanski M, Berger W, Arion VB, Keppler BK (2007) Metal-based paullones as putative CDK inhibitors for antitumor chemotherapy. J Med Chem 50:6343–6355

    CAS  Google Scholar 

  153. Ott I, Schmidt K, Kircher B, Schumacher P, Wiglenda T, Gust R (2005) Antitumor-active cobalt-alkyne complexes derived from acetylsalicylic acid: studies on the mode of drug action. J Med Chem 48:622–629

    CAS  Google Scholar 

  154. Jeon YT, Song YS (2006) Cyclooxygenases in cancer: chemoprevention and sensitization to conventional therapies. Mini Rev Med Chem 6:827–833

    CAS  Google Scholar 

  155. Hoeschele JD, Habtemariam A, Muir J, Sadler PJ (2007) 106Ru radiolabelling of the antitumour complex [(η6-fluorene)Ru(en)Cl]PF6. Dalton Trans 4974–4979

    Google Scholar 

  156. Zobi F, Mood BB, Wood PA, Fabbiani FPA, Parsons S, Sadler PJ (2007) Tagging (arene)ruthenium(II) anticancer complexes with fluorescent labels. Eur J Inorg Chem 2783–2796

    Google Scholar 

  157. Therrien B, Suess-Fink G, Govindaswamy P, Renfrew AK, Dyson PJ (2008) The “complex-in-a-complex” cations [(acac)2McRu6-(p-iPrC6H4Me)6(tpt)2(dhbq)3]6+: a trojan horse for cancer cells. Angew Chem Int Ed 47:3773–3776

    CAS  Google Scholar 

  158. Therrien B (2009) Arene ruthenium cages: boxes full of surprises. Eur J Inorg Chem 2445–2453

    Google Scholar 

  159. Schmitt F, Govindaswamy P, Suess-Fink G, Ang WH, Dyson PJ, Juillerat-Jeanneret L, Therrien B (2008) Ruthenium porphyrin compounds for photodynamic therapy of cancer. J Med Chem 51:1811–1816

    CAS  Google Scholar 

  160. Schmitt F, Govindaswamy P, Zava O, Suss-Fink G, Juillerat-Jeanneret L, Therrien B (2009) Combined arene ruthenium porphyrins as chemotherapeutics and photosensitizers for cancer therapy. J Biol Inorg Chem 14:101–109

    CAS  Google Scholar 

  161. Crowe AJ (1987) Organotin compounds in agriculture since 1980. Part I. Fungicidal, bactericidal and herbicidal properties. Appl Organomet Chem 1:143–155

    CAS  Google Scholar 

  162. Gielen M, Biesemans M, Willem R (2005) Organotin compounds: from kinetics to stereochemistry and antitumour activities. Appl Organomet Chem 19:440–450

    CAS  Google Scholar 

  163. Tabassum S, Pettinari C (2006) Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem 691:1761–1766

    CAS  Google Scholar 

  164. Pellerito C, Nagy L, Pellerito L, Szorcsik A (2006) Biological activity studies on organotin(IV)n+ complexes and parent compounds. J Organomet Chem 691:1733–1747

    CAS  Google Scholar 

  165. Pruchnik FP, Banbula M, Ciunik Z, Chojnacki H, Latocha M, Skop B, Wilczok T, Opolski A, Wietrzyk J, Nasulewicz A (2002) Structure, properties and cytostatic activity of triorganotin (aminoaryl)carboxylates. Eur J Inorg Chem 3214–3221

    Google Scholar 

  166. Alama A, Tasso B, Novelli F, Sparatore F (2009) Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today 14:500–508

    CAS  Google Scholar 

  167. Pettinari C, Marchetti F, Pettinari R, Cingolani A, Drozdov A, Troyanov S (2002) Coordination chemistry of bis(pyrazolones): a rational design of nuclearity tailored polynuclear complexes. Part 2. The interaction of organotin(IV) acceptors with 1, 4-bis(5-hydroxy-1-phenyl-3-methyl-1H-pyrazol-4-yl)butane-1, 4-dione. J Chem Soc Dalton Trans 2:188–194

    Google Scholar 

  168. Lee RF (1985) Metabolism of tributyltin oxide by crabs, oysters and fish. Mar Environ Res 17:145–148

    CAS  Google Scholar 

  169. Aw TY, Nicotera P, Manzo L, Orrenius S (1990) Tributyltin stimulates apoptosis in rat thymocytes. Arch Biochem Biophys 283:46–50

    CAS  Google Scholar 

  170. Viviani B, Rossi D, Chow SC, Nicotera P (1996) Triethyltin interferes with Ca2+ signaling and potentiates norepinephrine release in PC12 cells. Toxicol Appl Pharmacol 140:289–295

    CAS  Google Scholar 

  171. Liu H-G, Wang Y, Lian L, Xu L-H (2006) Tributyltin induces DNA damage as well as oxidative damage in rats. Environ Toxicol 21:166–171

    CAS  Google Scholar 

  172. Hadjikakou SK, Hadjiliadis N (2009) Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev 253:235–249

    CAS  Google Scholar 

  173. Pellerito C, D'Agati P, Fiore T, Mansueto C, Mansueto V, Stocco G, Nagy L, Pellerito L (2005) Synthesis, structural investigations on organotin(IV) chlorin-e6 complexes, their effect on sea urchin embryonic development and induced apoptosis. J Inorg Biochem 99:1294–1305

    CAS  Google Scholar 

  174. Cima F, Ballarin L (1999) TBT-induced apoptosis in tunicate haemocytes. Appl Organomet Chem 13:697–703

    CAS  Google Scholar 

  175. Khan MI, Baloch MK, Ashfaq M, Obaidullah (2006) Synthesis, characterization and in vitro cytotoxic effects of new organotin(IV)-2-maleimidopropanoates. Appl Organomet Chem 20:463-470

    Google Scholar 

  176. Alama A, Viale M, Cilli M, Bruzzo C, Novelli F, Tasso B, Sparatore F (2009) In vitro cytotoxic activity of tri-n-butyltin(IV)lupinylsulfide hydrogen fumarate (IST-FS 35) and preliminary antitumor activity in vivo. Invest New Drugs 27:124–130

    CAS  Google Scholar 

  177. Keppler BK, Heim ME, Flechtner H, Wingen F, Pool BL (1989) Assessment of the preclinical activity of budotitane in three different transplantable tumor systems, its lack of mutagenicity, and first results of clinical phase I studies. Arzneimittel-Forschung 39:706–709

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the bodies which support our research including the EC, MRC, EPSRC, BBSRC, ERC, Science City (AWM/ERDF) and many colleagues and co-workers for the stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Sadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pizarro, A.M., Habtemariam, A., Sadler, P.J. (2010). Activation Mechanisms for Organometallic Anticancer Complexes. In: Jaouen, G., Metzler-Nolte, N. (eds) Medicinal Organometallic Chemistry. Topics in Organometallic Chemistry, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13185-1_2

Download citation

Publish with us

Policies and ethics