Advertisement

Combining Heuristics Backtracking and Genetic Algorithm to Solve the Container Loading Problem with Weight Distribution

  • Luiz Jonatã Pires de Araújo
  • Plácido Pinheiro
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 73)

Abstract

We approach the container loading problem with maximization of the weight distribution. Our methodology consists of two phases. In the first phase, it applies heuristics based on integer linear programming to construct blocks building of small items. A backtracking algorithm chooses the best heuristics. The objective of this phase is to maximize the total volume of the packed boxes. In the second phase, we apply a genetic algorithm on found solution in previous phase in order to maximize its weight distribution. We use a well-known benchmark test to compare our results with other approaches, considering that our algorithm is not yet completely implemented. This paper also presents a case study of our implementation using some real data in a factory of stoves and refrigerators in Brazil. The obtained results are better than the found results by the factory’s system, in reduced time.

Keywords

Container Loading Problem Weight Distribution Metaheuristics Integer Programming Backtracking Genetic Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)Google Scholar
  2. 2.
    Bischoff, E.E.: Three dimensional packing of items with limited load bearing strength. European Journal of Operational Research 168, 952–966 (2006)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bischoff, E.E., Janetz, F., Ratcliff, M.S.W.: Loading Pallets with Nonidentical Items. European Journal of Operational Research 84, 681–692 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bischoff, E.E., Ratcliff, M.S.W.: Issues in the Development of Approaches to Container Loading. Omega 23, 377–390 (1995)CrossRefGoogle Scholar
  5. 5.
    Bortfeldt, A., Gehring, H.: A Hybrid Genetic Algorithm for the Container Loading Problem. European Journal of Operational Research 131, 143–161 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bortfeldt, A., Gehring, H., Mack, D.: A Parallel Tabu Search Algorithm for Solving the Container Loading Problem. Parallel Computing 29, 641–662 (2002)CrossRefGoogle Scholar
  7. 7.
    Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the container loading problem. European Journal of Operations Research 80, 68–76 (1993)CrossRefGoogle Scholar
  8. 8.
    Davies, A.P., Bischoff, E.E.: Weight distribution considerations in container loading. European Journal of Operations Research 114, 509–527 (1999)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dyckhoff, H.: A typology of cutting and packing problems. European Journal of Operational Research 44, 145–159 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gehring, H., Bortfeldt, A.: A Genetic Algorithm for Solving the Container Loading Problem. Internat. Trans. Internat. Trans. in Operational Research 4, 401–418 (1997)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gehring, H., Bortfeldt, A.: A Parallel Genetic Algorithm for Solving the Container Loading Problem. International Transactions in Operational Research 9, 497–511 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gehring, H., Menschner, K., Meyer, M.: A computer-based heuristic for packing pooled shipment containers. European Journal of Operational Research 44, 277–288 (1990)zbMATHCrossRefGoogle Scholar
  13. 13.
    George, J.A., Robinson, D.F.: A heuristic for packing boxes into a container. Computers and Operations Research 7, 147–156 (1980)CrossRefGoogle Scholar
  14. 14.
    Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorihtm for the container loading problem. International Transactions in Operations Research 11, 511–533 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Operational Research 48, 256–267 (2000)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Morabito, R., Arenales, M.: An and/or-graph approach to the container loading problem. International Transactions in Operational Research 1(1), 59–73 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Nepomuceno, N., Pinheiro, P.R., Coelho, A.L.V.: Tackling the Container Loading Problem: A Hybrid Approach Based on Integer Linear Programming and Genetic Algorithms. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 154–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Pisinger, D.: Heuristc for the Container Loading Problem. European Journal of Operational Research 141, 382–392 (2000)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Pisinger, D.: Heuristics for the Container Loading Problem. European Journal of Operational Research 141, 143–153 (2002)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Wascher, G., Hausner, H., Schumann, H.: An improved typology of cutting and packing problems. European Journal of Operational Research 183(3), 1109–1130 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Luiz Jonatã Pires de Araújo
    • 1
  • Plácido Pinheiro
    • 1
  1. 1.Master Course in Applied Computer SciencesUniversity of Fortaleza (UNIFOR)FortalezaBrazil

Personalised recommendations