Advertisement

A Parallel Cooperative Evolutionary Strategy for Solving the Reporting Cells Problem

  • Álvaro Rubio-Largo
  • David L. González-Álvarez
  • Miguel A. Vega-Rodríguez
  • Sónia M. Almeida-Luz
  • Juan A. Gómez-Pulido
  • Juan M. Sánchez-Pérez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 73)

Abstract

The Location Management of a mobile network is a major problem nowadays. One of the most popular strategies used to solve this problem is the Reporting Cells. To configure a mobile network is necessary to indicate what cells of the network are going to operate as Reporting Cells (RC). The choice of these cells is not trivial because they affect directly to the cost of the mobile network. Hereby we present a parallel cooperative strategy of evolutionary algorithms to solve the RC problem. This method tries to solve the Location Management, placing optimally the RC in a mobile network, minimizing its cost. Due to the large amount of solutions that we can find, this problem is suitable for being solved with evolutionary strategies. Our work consists in the implementation of some evolutionary algorithms that obtain very good results working in a parallel way on a cluster.

Keywords

Evolutionary Algorithm Differential Evolution Mobile Network Probability Vector Location Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar–Noy, A., Kessler, I.: Tracking mobile users in wireless a communication networks. In: INFOCOM, pp. 1232–1239 (2003)Google Scholar
  2. 2.
    Alba, E., García–Nieto, J., Taheri, J., Zomaya, A.: New Research in Nature Inspired Algorithms for Mobility Management in GSM Networks. In: Fifth European Workshop on the Application of Nature–inspired Techniques to Telecommunication Networks and other Connected Systems, EvoWorkshops, Napoles, Italy, March 2008, pp. 1–10 (2008)Google Scholar
  3. 3.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. of Michigan Press, Ann Arbor (1975)Google Scholar
  4. 4.
    Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6, 109–134 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Price, K., Storn, R.: Differential Evolution – A Simple Evolution Strategy for Fast Optimization. Dr. Dobbs Journal 22(4), 18–24, 78 (1997)MathSciNetGoogle Scholar
  6. 6.
    Baluja, S.: Population-Based Incremental Learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CS–94–163, Carnegie Mellon University (1994)Google Scholar
  7. 7.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459–471 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Glover, F.: A Template for Scatter Search and Path Relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 1–51. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Segura, C., et al.: Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi–Objective Evolutionary Algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 305–319. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Almeida–Luz, S.M., Vega–Rodríguez, M.A., Gómez–Pulido, J.A., Sánchez–Pérez, J.M.: Applying Differential Evolution to the Reporting Cells Problem. In: International Multiconference on Computer Science and Information Technology (IMCSIT 2008), Wisla, Poland, October, pp. 65–71 (2008)Google Scholar
  11. 11.
    Subrata, R., Zomaya, A.: A Comparison of Three Artificial Life Techniques for Reporting Cell Planning in Mobile Computing. IEEE Transactions on Parallel and Distributed Systems 14(2), 142–153 (2003)CrossRefGoogle Scholar
  12. 12.
    Rubio–Largo, A., González–Álvarez, D.L., Vega–Rodríguez, M.A.: Test Networks for RC, http://arco.unex.es/rc

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Álvaro Rubio-Largo
    • 1
  • David L. González-Álvarez
    • 1
  • Miguel A. Vega-Rodríguez
    • 1
  • Sónia M. Almeida-Luz
    • 2
  • Juan A. Gómez-Pulido
    • 1
  • Juan M. Sánchez-Pérez
    • 1
  1. 1.Polytechnic SchoolUniversity of ExtremaduraCáceresSpain
  2. 2.School of Technology and ManagementPolytechnic Institute of LeiriaPortugal

Personalised recommendations