Skip to main content

Space as a Resource

  • Chapter
  • First Online:
Progress in Botany 72

Part of the book series: Progress in Botany ((BOTANY,volume 72))

Abstract

In this assay, we aim at defending the hypothesis that physically spoken sheer “empty” space in itself without any other commodities has the function of resource for plant life. Definitions of space, niche, and resource are examined. We consider competition for resources and space occupation and exploitation above ground, where light is often a decisive limiting factor. Steady-state and dynamic situations are assessed with respect to cost–benefit relations and using the examples of epiphytic niches and gaps of tropical rain forests. In a similar vein, belowground relations are evaluated with the morphological and physiological responses of roots, the role of different types of mycorrhiza characterized by fungal occupation of soil–host rhizospheres, and the dynamic recognition of self and foreign by roots in the soil. Sharing of space is exemplified by describing vegetation islands on sand plains and epiphyte nests in tree canopies, where facilitation is distinguished from competition. Another example for natural facilitation is hydraulic redistribution. Applied facilitation with anthropogenic manipulation is illustrated by nurse effects in tree plantations. The new concept of “empty” space that can become a limiting resource, i.e., the central hypothesis of the essay, is supported by considering the four dimensions of space, namely the three dimensions of extension in length plus the dimension of time. However, in the simplest case of the one dimension of space provided for atmospheric bromeliads by a telephone-line wire devoid of any other commodities, we may recognize the most straightforward compelling argument for the conclusion we want to promote in this assay, namely, that sheer space in itself has the function of resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (2001) Exploration types of ectomycorrhizae – a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Google Scholar 

  • Agerer R (2007) Diversität der Ektomykorrhizen im unter- und oberirdischen Vergleich: die Explorationstypen. Z Mykol 73:61–88

    Google Scholar 

  • Agerer R (2009) Bedeutung der Ektomykorrhiza für Waldökosysteme. Rundgespräche der Kommission für Ökologie, vol 37, Ökologische Rolle von Pilzen. Verlag Dr. Friedrich Pfeil, München, pp 111–121

    Google Scholar 

  • Agerer R, Raidl S (2004) Distance-related semi-quantitative estimation of the extramatrical ectomycorrhizal mycelia of Cortinarius obtusus and Tylospora asterophora. Mycol Prog 3:57–64

    Google Scholar 

  • Anten NPR, Hirose T (2001) Limitations on photosynthesis of competing individuals in stands and the consequences for canopy structure. Oecologia 129:186–196

    Google Scholar 

  • Armstrong RA (1982) Competition between 3 saxicolous species of Parmelia (lichens). New Phytol 90:67–72

    Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    PubMed  CAS  Google Scholar 

  • Ball E, Hann J, Kluge M, Lee HSJ, Lüttge U, Orthen B, Popp M, Schmittt A, Ting IP (1991) Ecophysiological comportment of the tropical CAM-tree Clusia in the field. I growth of Clusia rosea Jacq. On St. John, US Virgin Islands, Lesser Antilles. New Phytol 117:473–481

    Google Scholar 

  • Bartelheimer M, Steinlein T, Beyschlag W (2008) 15N-nitrate-labelling demonstrates a size symmetric competitive effect on belowground resource uptake. Plant Ecol 199:243–253

    Google Scholar 

  • Bauerle TL, Richards JH, Smart DR, Eissenstat DM (2008) Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant Cell Environ 31:177–186

    PubMed  CAS  Google Scholar 

  • Begon ME, Harper JL, Townsend CR (1990) Ecology. Blackwell Science, London

    Google Scholar 

  • Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management, vol 150, 2nd edn, Ecological studies. Springer, Berlin

    Google Scholar 

  • Benzing DH (1989) The mineral nutrition of epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecologial studies, vol 76. Springer, Berlin

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge

    Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile and adaptive radiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Beyschlag W, Ryel RJ, Ullmann I (1992) Experimental and modelling studies of competition for light in roadside grasses. Bot Acta 105:285–291

    Google Scholar 

  • Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002) Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol 22:1107–1117

    PubMed  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trend Ecol Evol 18:119–125

    Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, White DA, Ong CK (2001) Tree roots: conduits for deep recharge of soil water. Oecologia 126:158–165

    Google Scholar 

  • Cahill JF, Casper BB (2000) Investigating the relationship between neighbor root biomass and belowground competition: field evidence for symmetric competition belowground. Oikos 90:311–320

    Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant community. Ecology 78:1958–1965

    Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    PubMed  CAS  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570

    Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. The University of Chicago Press, Chicago

    Google Scholar 

  • Chiarucci A, Mistral M, Bonini I, Anderson BJ, Wilson JB (2002) Canopy occupancy: how much of the space in plant communities is filled? Folia Geobot 37:333–338

    Google Scholar 

  • Cohn I (1995) The myths and realities of industrial timber plantations. For Perspect 2:5–8

    Google Scholar 

  • Da Silva Junior MC, Scarano FR, De Souza CF (1995) Regeneration of an Atlantic forest formation in the understory of a Eucalyptus grandis plantation in south-eastern Brazil. J Trop Ecol 11:147–152

    Google Scholar 

  • Dalling JW, Hubbell SP, Silvera K (1998) Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. J Ecol 86:674–689

    Google Scholar 

  • Darwin C, Darwin F (1896) The power of movement in plants. D. Appleton, New York

    Google Scholar 

  • de Freitas CA, Scarano FR, Biesboer DD (2003) Morphological variation in two facultative epiphytic bromeliads growing on the floor of a swamp forest. Biotropica 35:546–550

    Google Scholar 

  • de Kroon H, Hutchings MJ (1995) Morphological plasticity in clonal plants: the foraging concept reconsidered. J Ecol 83:143–152

    Google Scholar 

  • Dias ATC, Scarano FR (2007) Clusia as nurse plant. In: Lüttge U (ed) Clusia a woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 194. Springer, Berlin

    Google Scholar 

  • Dias ATC, Zaluar HLT, Ganade G, Scarano FR (2005) Canopy composition influencing plant patch dynamics in a Brazilian sandy coastal plain. J Trop Ecol 21:343–347

    Google Scholar 

  • Elbert W, Weber B, Büdel B, Andreae MO, Pöschl U (2009) Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen. Biogeosci Discuss 6:1–33

    Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    PubMed  CAS  Google Scholar 

  • Falik O, Reides P, Gersani M, Novoplansky A (2005) Root navigation by self inhibition. Plant Cell Environ 28:562–569

    Google Scholar 

  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Google Scholar 

  • Fetene M, Beck E (2004) Water relations of indigenous versus exotic tree species, growing at the same site in a tropical montane forest in southern Ethiopia. Trees 18:428–435

    Google Scholar 

  • Feyera S, Beck E, Lüttge U (2002) Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees 16:245–249

    Google Scholar 

  • Franco AC, Nobel PS (1989) Effect of nurse plants on the microhabitat and growth of cacti. J Ecol 77:870–886

    Google Scholar 

  • Fransen B, de Kroon H, Berendse F (2001) Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology 82:2534–2546

    Google Scholar 

  • Gayler S, Grams TEE, Kozovits AR, Winkler JB, Luedemann G, Priesack E (2006) Analysis of competition effects in mono- and mixed cultures of juvenile beech and spruce by means of the plant growth simulation model PLATHO. Plant Biol 8:503–514

    PubMed  CAS  Google Scholar 

  • Geldenhuys CJ (1997) Native forest regeneration in pine and eucalypt plantations in Northern Province, South Africa. For Ecol Manage 99:101–115

    Google Scholar 

  • Gersani M, Abramsky Z, Falik O (1998) Density-dependent habitat selection in plants. Evol Ecol 12:223–234

    Google Scholar 

  • Goh CJ, Kluge M (1989) Gas exchange and water relations in epiphytic orchids. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin, pp 139–166

    Google Scholar 

  • Grams TEE, Andersen CP (2007) Competition for resources in trees: physiological versus morphological plasticity. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 68. Springer, Berlin, pp 356–381

    Google Scholar 

  • Grams TEE, Kozovits AR, Reiter IM, Winkler JB, Sommerkorn M, Blaschke H, Häberle KH, Matyssek R (2002) Quantifying competitiveness in woody plants. Plant Biol 4:153–158

    Google Scholar 

  • Grams TEE, Kozovits AR, Häberle K-H, Matyssek R, Dawson TE (2007) Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant Cell Environ 30:1023–1034

    PubMed  CAS  Google Scholar 

  • Grams TEE, Matyssek R (2010) Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes. Environmental Pollution 158:1036–1042

    PubMed  CAS  Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin, pp 42–86

    Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci USA 101:3863–3867

    PubMed  CAS  Google Scholar 

  • Hastings A, Hom CL, Ellner S, Turchin P, Godfray HCJ (1993) Chaos in ecology: is mother nature a strange attractor? Annu Rev Ecol Syst 24:1–33

    Google Scholar 

  • Hestmark G, Schroeter B, Kappen L (1997) Intrathalline and size-dependent patterns of activity in Lasallia pustulata and their possible consequences for competitive interactions. Funct Ecol 11:318–322

    Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39

    CAS  Google Scholar 

  • Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant and Soil 327:71–83

    CAS  Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411

    PubMed  CAS  Google Scholar 

  • Hodge A (2009) Root decisions. Plant Cell Environ 32:628–640

    PubMed  Google Scholar 

  • Hodge A (2010) Roots: the acquisition of water and nutrients from the heterogeneous soil environment. Prog Bot 71:307–337

    Google Scholar 

  • Jacobs M (1988) The tropical rain forest. Springer, Berlin

    Google Scholar 

  • Johansson DR (1975) Ecology of epiphytic orchids in West African rain forests. Am Orchid Soc Bull 46:703–707

    Google Scholar 

  • Keenan R, Lamb D, Woldring O, Irvine T, Jensen R (1997) Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. For Ecol Manage 99:117–131

    Google Scholar 

  • King S, Beck F, Lüttge U (2004) On the mystery of the golden angle in phyllotaxis. Plant Cell Environ 27:685–695

    Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729

    PubMed  CAS  Google Scholar 

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005a) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401

    Google Scholar 

  • Kozovits AR, Matyssek R, Winkler JB, Göttlein A, Blaschke H, Grams TEE (2005b) Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167:181–196

    PubMed  Google Scholar 

  • Küppers M (1989) Ecological significance of above-ground architectural patterns in woody plants – a question of cost–benefit relationships. Trends Ecol Evol 4:375–379

    PubMed  Google Scholar 

  • Küppers M, List R (1997) MADEIRA – a simulation of carbon gain, allocation, canopy architecture in competing woody plants. In: Jeremonidis G, Vincent JFV (eds) Plant Biomechanics 1997. The University of Reading, Reading, pp 321–329

    Google Scholar 

  • Kuptz D, Grams TEE, Günther S (2010) Light acclimation of four native tree species in felling gaps within a tropical mountain rain forest. Trees-Structure and Function 24:117–127

    Google Scholar 

  • Levin J, Muller-Landau HC (2001) The emergence of diversity in plant communities. CR Acad Sci Paris Sci de la Vie 323:129–139

    Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649

    PubMed  CAS  Google Scholar 

  • Luedemann G, Matyssek R, Winkler JB, Grams TEE (2009) Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60

    CAS  Google Scholar 

  • Lüttge U (1985) Epiphyten: evolution und ökophysiologe. Naturwissenschaften 72:557–566

    Google Scholar 

  • Lüttge U (ed) (1989a) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin

    Google Scholar 

  • Lüttge U (1989b) Vascular epiphytes: setting the scene. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin, pp 1–14

    Google Scholar 

  • Lüttge U (1997) Cyanobacterial Tintenstrich communities and their ecology. Naturwissenschaften 84:526–534

    Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lüttge U, Ball E, Kluge M, Ong BL (1986) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Vég 24:315–331

    Google Scholar 

  • Lüttge U, Berg A, Fetene M, Nauke P, Peter D, Beck E (2003) Comparative characterization of photosynthetic performance and water relations of native trees and exotic plantation trees in an Ethiopian forest. Trees 17:40–50

    Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanism and intracommunity distributions of two Mojave desert shrubs. Ecology 73:2145–2151

    Google Scholar 

  • Manrubia SC, Solé RV (1996) Self-organized criticality in rainforest dynamics. Chaos Solitons Fractals 7:523–541

    Google Scholar 

  • Massey FP, Massey K, Press MC, Hartley SE (2006) Neighbourhood composition determines growth, architecture and herbivory in tropical rain forest seedling. J Ecol 94:646–655

    Google Scholar 

  • Matyssek R, Schnyder H, Munch JC, Oßwald W, Pretzsch H, Treutter D (2005) Resource allocation in plants – the balance between resource sequestration and retention. Plant Biol 7:557–559

    Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    PubMed  CAS  Google Scholar 

  • McConnaughay KDM, Bazzaz FA (1991) Is physical space a soil resource? Ecology 72:94–103

    Google Scholar 

  • Michelsen A, Lisanework N, Friis I, Holst N (1996) Comparisons of understory vegetation and soil fertility in plantations and adjacent natural forests in the Ethiopian highlands. J Appl Ecol 33:627–642

    Google Scholar 

  • Miyazawa Y, Ito Y, Moriwaki T, Kobayashi A, Fujii N, Takahashi H (2009) A molecular mechanism unique to hydrotropism in roots. Plant Sci 177:297–301

    CAS  Google Scholar 

  • Morris SC (2003) Life’s solution. Inevitable humans in a lonely universe. Cambridge University Press, New York

    Google Scholar 

  • Newell EA, McDonald EP, Strain BR, Denslow JS (1993) Photosynthetic responses of Miconia species to canopy openings in a lowland tropical rainforest. Oecologia 94:49–56

    Google Scholar 

  • Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant Cell Environ 32:726–741

    PubMed  Google Scholar 

  • Nyanumba SM (2007) Developmental strategies of plants under temporal variation in growth conditions. MSc thesis, Ben-Gurion University of the Negev, Israel

    Google Scholar 

  • Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363

    PubMed  Google Scholar 

  • Orians GH (1982) The influence of tree-fall in tropical forest on tree species richness. Trop Ecol 23:255–279

    Google Scholar 

  • Palmitto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623

    Google Scholar 

  • Parrotta JA (1993) Secondary forest regeneration on degraded tropical lands. The role of plantations as “foster ecosystems”. In: Lieth H, Lohmann M (eds) Restoration of tropical forest ecosystems. Kluwer, Dordrecht, pp 66–73

    Google Scholar 

  • Parrotta JA (1995) Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. J Veg Sci 6:627–636

    Google Scholar 

  • Pearcy RW, Yang W (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 86:1–12

    Google Scholar 

  • Pearcy RW, Yang W (1998) The functional morphology of light capture and carbon gain in the redwood forest understory plant Adenocaulon bicolor Hook. Funct Ecol 12:543–552

    Google Scholar 

  • Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, Sánchez WG, Yli-Halla M, Rose S (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775

    Google Scholar 

  • Pretzsch H (2010) Re-evaluation of allometry: state-of-the-art and perspective regarding individuals and stands of woody plants. Prog Bot 71:339–369

    Google Scholar 

  • Reekie EG, Bazzaz FA (1989) Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated CO2. Oecologia 79:212–222

    Google Scholar 

  • Reiter IM, Häberle KH, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349

    PubMed  CAS  Google Scholar 

  • Remmert H (1985) Was geschieht im Klimax-Stadium? Ökologisches Gleichgewicht durch Mosaik aus desynchronen Zyklen. Naturwissenschaften 72:505–512

    Google Scholar 

  • Remmert H (1991) The mosaic cycle of ecosystems. Ecological studies, vol 85. Springer, Berlin

    Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift – substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Google Scholar 

  • Ryel RJ, Caldwell MM, Leffler AJ, Yoder CK (2003) Rapid soil moisture recharge to depth by roots in a stand of Artemisia tridentata. Ecology 84:757–764

    Google Scholar 

  • Ryel RJ, Leffler AJ, Peek MS, Ivans CY, Caldwell MM (2004) Water conservation in Artemisia tridentata through redistribution of precipitation. Oecologia 141:335–345

    PubMed  CAS  Google Scholar 

  • Sampaio MC, Picó FX, Scarano FR (2005) Ramet demography of a nurse bromeliad in Brazilian restingas. Am J Bot 92:674–681

    PubMed  Google Scholar 

  • Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rain forest. Ann Bot 90:517–524

    PubMed  Google Scholar 

  • Scarano FR, Ribeiro KT, Moraes LFD, Lima HC (1997) Plant establishment on flooded and non-flooded patches of a swamp forest in southeastern Brazil. Brazil J Trop Ecol 14:793–803

    Google Scholar 

  • Scarano FR, de Mattos EA, Franco AC, Herzog B, Ball E, Grams TEE, Mantovani A, Barreto S, Haag-Kerwer A, Lüttge U (1999) Habitat segregation of C3 and CAM Nidularium (Bromeliaceae) in response to different light regimes in the understory of a swamp forest in southeastern Brazil. Flora 194:281–288

    Google Scholar 

  • Scarano FR, Duarte HM, Franco AC, Geßler A, de Mattos EA, Rennenberg H, Lüttge U (2005) Physiological synecology of tree species in relation to geographic distribution and ecophysiological parameters at the Atlantic forest periphery in Brazil: an overview. Trees 19:493–496

    Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: Are plants territorial? Advances in Ecological Research, vol 28, pp 145–180

    Google Scholar 

  • Schimper AFW (1888) Botanische Mitteilungen aus den Tropen. II. Epiphytische Vegetation Amerikas. G Fischer, Jena

    Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. G Fischer, Jena

    Google Scholar 

  • Schulze E-D, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 585–602

    Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455

    Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    CAS  Google Scholar 

  • Smith JAC (1989) Epiphytic bromeliads. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin, pp 109–138

    Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbiscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244

    CAS  Google Scholar 

  • Solé RV, Manrubia SC (1995a) Self-similarity in rain forests: evidence for a critical state. Phys Rev E 51:6250–6253

    Google Scholar 

  • Solé RV, Manrubia SC (1995b) Are rainforests self-organized in a critical state? J Theor Biol 173:31–40

    Google Scholar 

  • Solé RV, Manrubia SC, Luque B (1994) Multifractals in rainforest ecosystems: modeling and simulations. In: Novak NM (ed) Fractals in the natural and applied sciences. Elsevier, Amsterdam, pp 397–407

    Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL (2009) Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90:2808–2822

    PubMed  Google Scholar 

  • Torquebiau EF (1988) Photosynthetically active radiation environment, patch dynamics and architecture in a tropical rainforest in Sumatra. Aust J Plant Physiol 15:327–342

    Google Scholar 

  • Tremmel DC, Bazzaz FA (1995) Plant architecture and allocation in different neighbourhoods: implications for competitive success. Ecology 76:262–271

    Google Scholar 

  • Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Magård E, Balsev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229

    Google Scholar 

  • van der Meer PJ, Bongers F (1996) Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J Ecol 84:19–29

    Google Scholar 

  • Van Wyk GF, Everard DA, Geldenhuys CJ (1995) Forest ecotone development and succession: experimental results and guidelines for forest rehabilitation and protection. Report FOR DEA 867. Division of Forest Science and Technology. CSIR, Pretoria

    Google Scholar 

  • Walter H (1973) Die Vegetation der Erde in ökologischer Betrachtung, Die tropischen und subtropischen Zonen, vol 1. G Fischer, Jena

    Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631

    PubMed  CAS  Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci USA 106:7040–7045

    PubMed  CAS  Google Scholar 

  • Zaluar HLT (1997) Espécies focais e a formação de moitas na restinga abertga de Clusia, Carpebus, RJ. M.Sc. Dissertation, Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Zotz G, Hietz P, Schmidt G (2001) Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes. J Exp Bot 52:2051–2056

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fabio R. Scarano and an anonymous reviewer for valuable suggestions and thought-provoking comments. The new concept of “empty” space as a resource emerges from the work of the Sonderforschungsbereich (SFB) 607 “Growth and parasite defense” of the Deutsche Forschungsgemeinschaft (DFG). Both authors thank the members of the SFB for discussions and continuous stimulating exchange and T.E.E.G. thanks the DFG for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten E. E. Grams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grams, T.E.E., Lüttge, U. (2010). Space as a Resource. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 72. Progress in Botany, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13145-5_13

Download citation

Publish with us

Policies and ethics