Skip to main content

An Instrument for Monitoring Inflow and Washout of an Optical Contrast Agent into the Brain

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 69))

  • 1354 Accesses

Abstract

A time resolved method based on near infrared spectroscopy for monitoring of changes in tissue absorption and concentration of the exogenoeus chromophore concentration is presented. We constructed a setup which can be used to measure changes in oxygenation of the brain tissue by monitoring of diffuse reflectance at two wavelengths. Currently, the instrument has been modified in such a way that simultaneous measurements of diffuse reflectance and fluorescence can be carried out. We present results of measurement of diffuse reflectance and fluorescence during injection of an optical contrast agent in healthy volunteer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jobsis, F.F.: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977)

    Article  Google Scholar 

  2. Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends In Neurosciences 20(10), 435–442 (1997)

    Article  Google Scholar 

  3. Hope-Ross, M., et al.: Adverse reactions due to indocyanine green. Ophthalmology 101(3), 529–533 (1994)

    Google Scholar 

  4. de Liguori Carino, N., et al.: Perioperative use of the LiMON method of indocyanine green elimination measurement for the prediction and early detection of post-hepatectomy liver failure. Eur. J. Surg. Oncol. (2009)

    Google Scholar 

  5. Ishizawa, T., et al.: Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115(11), 2491–2504 (2009)

    Article  Google Scholar 

  6. Sheng, Q.S., et al.: Indocyanine green clearance test and model for end-stage liver disease score of patients with liver cirrhosis. Hepatobiliary Pancreat. Dis. Int. 8(1), 46–49 (2009)

    Google Scholar 

  7. He, Y.L., et al.: Measurement of blood volume using indocyanine green measured with pulse-spectrophotometry: its reproducibility and reliability. Crit. Care Med. 26(8), 1446–1451 (1998)

    Article  Google Scholar 

  8. Ishihara, H., et al.: Does indocyanine green accurately measure plasma volume early after cardiac surgery? Anesth. Analg. 94(4), 781–786 (2002) (table of contents)

    Article  Google Scholar 

  9. Guenette, J.A., et al.: Human respiratory muscle blood flow measured by near-infrared spectroscopy and indocyanine green. J. Appl. Physiol. 104(4), 1202–1210 (2008)

    Article  Google Scholar 

  10. Leung, T.S., et al.: A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates. Pediatr. Res. 55(1), 134–141 (2004)

    Article  Google Scholar 

  11. Terborg, C., et al.: Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near infrared spectroscopy and indocyanine green. J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004)

    Google Scholar 

  12. Keller, E., et al.: Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution. Neuroimage 20(2), 828–839 (2003)

    Article  Google Scholar 

  13. Steinbrink, J., et al.: Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass. J. Thorac Cardiovasc. Surg. 132(5), 1172–1178 (2006)

    Article  Google Scholar 

  14. Liebert, A., et al.: Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Applied Optics 43(15), 3037–3047 (2004)

    Article  Google Scholar 

  15. Liebert, A., et al.: Bed side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time resolved diffuse reflectance. Neuroimage 24(2), 426–435 (2005)

    Article  Google Scholar 

  16. Steinbrink, J., et al.: Towards noninvasive molecular fluorescence imaging of the human brain. Neurodegener. Dis. 5(5), 296–303 (2008)

    Article  Google Scholar 

  17. Liebert, A., et al.: Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31(2), 600–608 (2006)

    Article  Google Scholar 

  18. Liebert, A., et al.: Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media. Opt. Express 16(17), 13188–13202 (2008)

    Article  Google Scholar 

  19. Liebert, A., et al.: Bed side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time resolved diffuse reflectance. Neuroimage 24(2), 426–435 (2005)

    Article  Google Scholar 

  20. Kacprzak, M., et al.: Time-Resolved Optical Imager for Assessment of Cerebral Oxygenation. Journal of Biomedical Optics 12, 034019 (2007)

    Article  Google Scholar 

  21. Milej, D., et al.: Advantages of fluorescence over diffuse reflectance measurements tested in phantom experiments with dynamic inflow of ICG. Opto-electronics Review (2010) (accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milej, D., Kacprzak, M., Żołek, N., Sawosz, P., Maniewski, R., Liebert, A. (2010). An Instrument for Monitoring Inflow and Washout of an Optical Contrast Agent into the Brain. In: Piȩtka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13105-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13105-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13104-2

  • Online ISBN: 978-3-642-13105-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics