Skip to main content

Computer-Assisted Navigation in Brain Tumor Surgery

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 69))

  • 1369 Accesses

Abstract

Despite a great advancements in brain tumor diagnosis and surgery, a precise intraoperative location and removal of the neoplasmatic tissue remains difficult in many patients. For these reasons different navigation systems were developed. For the last several years neuronavigation has become widely used in brain tumor surgery. Surgical removal remains difficult in patients with small and deep seated brain lesions, multiple tumors, or location in important functional areas of the brain. Neurosurgeon faces the problem of causing severe neurological deficit as well as can have problems with finding and removing the lesion. Use of key hole procedures and surgical microscopes minimizes an operation field what forces to have a perfect orientation in the operation area, as well as precise data about the actual position of the instruments and their distance from the lesion. GOAL AND PURPOSE: Basing on their own surgical experience of 30 patients with brain tumors, the authors show the advantages and limitations of neuronavigation in surgical removal of brain tumors. MATERIAL AND METHODS: 30 patients with brain tumors located deeply in the hemispheres, skull and posterior fossa were analyzed. All patients were treated surgically with the use of neuronavigation equipment (Stryker Intellect Cranial Navigation System). Microsurgical technique with the use of magnification was introduced in all patients. After surgery, controlled CT examinations were performed in order to check the extension of tumor removal. RESULTS: Total surgical removal had been achieved in all patients. In all but one clinical result was excellent, the last patient died 2 weeks after removal of giant hypophyseal adenoma because of heart failure. CONCLUSIONS: Neuronavigation is an easy to use system which brings efficiency to surgical procedures. It allows to get a proper orientation in the operation field resulting in safe and accurate removal of intracranial neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Air, E.L., Leach, J.L., Warnick, R.E., McPherson, C.M.: Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: a retrospective review of 284 cases. J. Neurosurg. 111, 820–824 (2009)

    Article  Google Scholar 

  2. Berger, M.S., Hadjipanayis, C.G.: Surgery of intrinsic cerebral tumors. Neurosurgery 61, 279–304 (2007)

    Article  Google Scholar 

  3. Dammers, R., Haitsma, I.K., Schouten, J.W., et al.: Safety and efficacy of frameless and frame-based intracranial biopsy techniques. Acta Neurochir (Wien) 150, 23–29 (2008)

    Article  Google Scholar 

  4. Fahlbusch, R., Samii, A.: A review of cranial imaging techniques: potential and limitations. Clin. Neurosurg. 54, 100–104 (2007)

    Google Scholar 

  5. Fuji, M., Wakabayashi, T.: Image-guided neurosurgery using intraoperative MRI. Brain Nerve 61, 823–834 (2009)

    Google Scholar 

  6. Ganslandt, O., Behari, S., Gralla, J., et al.: Neuronavigation: concept, techniques and applications. Neurology India 50, 244–255 (2002)

    Google Scholar 

  7. Iseki, H., Nakamura, R., Muragaki, Y., et al.: Advanced computed aided intraoperative technologies for information-guided surgical management of gliomas: Tokyo Women’s Medical University experience. Minim. Invasive Neurosurg. 51, 285–291 (2008)

    Article  Google Scholar 

  8. Johnson, R.D., Stacey, R.J.: The impact of new imaging technologies in neurosurgery. Surgeon 6, 344–349 (2008)

    Article  Google Scholar 

  9. Jung, T.Y., Jung, S., Kim, I.Y., et al.: Application of neuronavigation system to brain tumor surgery with clinical experience of 420 cases. Minim. Invasive Neurosurg. 49, 210–215 (2006)

    Article  Google Scholar 

  10. Simon, M., Schramm, J.: Surgical management of intracranial gliomas. Recent Results Cancer Res. 171, 105–124 (2009)

    Article  Google Scholar 

  11. Tanaka, Y., Nariai, T., Momose, T., et al.: Glioma surgery using a multimodal navigation system with integrated metabolic images. J. Neurosurg. 110, 163–172 (2009)

    Article  Google Scholar 

  12. Tirakotai, W., Sure, U., Benes, L., et al.: Image guided transsylvian, transinsular approach for insular cavernous angiomas. Neurosurgery 61, 423–430 (2007)

    Article  Google Scholar 

  13. Willems, P.W., van der Sprenkel, J.W., Tulleken, C.A., et al.: Neuronavigation and surgery of intracerebral tumours. J. Neurol. 253, 1123–1136 (2006)

    Article  Google Scholar 

  14. Xue-Fei, S., Yong-Fei, W., Shi-Qi, L., et al.: Microsurgical treatment for giant and irregular pituitary adenomas in a series of 54 consecutive patients. Br. J. Neurosurg. 22, 636–648 (2008)

    Article  Google Scholar 

  15. Zhou, H., Miller, D., Schulte, D.M., et al.: Transsulcal approach supported by navigation-guided neurophysiological monitoring for resection of paracentral cavernomas. Clin. Neurol. Neurosurg. 111, 69–78 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotwica, Z., Saracen, A. (2010). Computer-Assisted Navigation in Brain Tumor Surgery. In: Piȩtka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13105-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13105-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13104-2

  • Online ISBN: 978-3-642-13105-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics