Skip to main content

Parametric Curves in Liver Deformation for Laparoscopic Purposes

  • Conference paper

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 69))

Abstract

An increasing number of conducted endoscopic procedures results in inventing new computer systems, that would be a helpful tool in this kind of medical examinations. In this paper the need of evaluating algorithms describing the deformation of internal organs for laparoscopic surgery purposes is presented. A possible solution to the problem of visualising such deformations has been suggested. Furthermore, the way of collecting data by studying the liver reaction to an external force was described. A model of the liver deformations based on Bézier curves has been developed and compared with the shape of the real liver deformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Picinbono, G., Delingette, H., Ayache, N.: Nonlinear and anisotropic elastic soft tissue models for medical simulation. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1370–1375 (2001)

    Google Scholar 

  2. de Casson, F.B., Laugier, C.: Modeling the dynamics of a human liver for a minimally invasive surgery simulator. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1156–1165. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Lamy, D., Chaillou, C.: Design, implementation and evaluation of an haptic interface for surgical gestures training. In: International Scientific Workshop on Virtual Reality and Prototyping, pp. 107–116 (1999)

    Google Scholar 

  4. Basdogan, C., Ho, M., Srinivasan, S., Small, D., Dawson, S.L.: Force interaction in laparoscopic simulation: haptic rendering soft tissues. In: MMVR, ch. 6, pp. 28–31 (1998)

    Google Scholar 

  5. Debunne, G., Desbrun, M., Barr, A., Cani, M.-P.: Interactive multiresolution animation of deformable models. In: CAS 1999 (1999)

    Google Scholar 

  6. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. In: Eurographics 1996, pp. 57–66 (1996)

    Google Scholar 

  7. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics 5, 62–73 (1999)

    Article  Google Scholar 

  8. Cotin, S., Delingette, H., Ayache, N.: A hybryd elastic model for real-time cutting, deformations and force feedback for surgery training and simulation. The Visual Computer 16, 437–452 (2000)

    Article  MATH  Google Scholar 

  9. Picinbono, G., Lombardo, J.C., Delingette, H., Ayache, N.: Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force Extrapolation. Journal of Visualization and Computer Animation (2001)

    Google Scholar 

  10. Debunne, G., Desbrun, M., Cani, M., Barr, A.: Dynamic real time deformations using space an time adaptive sampling. In: SIGGRAPH, pp. 31–36 (2001)

    Google Scholar 

  11. Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. In: Eurographics, vol. 20, pp. 349–358 (2001)

    Google Scholar 

  12. Muller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: ACM SIGGRAPH, pp. 49–54 (2001)

    Google Scholar 

  13. Nakaguchi, T., Tagaya, M., Tamura, N., Tsumura, N., Miyake, Y.: Real-time deformations of organ based on structural mechanics for surgical simulators. In: SPIE, pp. 2A1–2A6 (2006)

    Google Scholar 

  14. Ushiki, S., Matsuguma, C., Koishi, T., Nakaguchi, T., Tsumura, N., Miyake, Y.: Real-time deformation model of liver based on structural mechanics for medical training systems and its accuracy evaluation. Asian Forum on Medical Imaging 2007, IEICE Technical Report 106, 77–80 (2007)

    Google Scholar 

  15. Gibson, C.G.: Elementary geometry of algebraic curves: an undergraduate introduction. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Goldman, R.: On the algebraic and geometric foundations of computer graphics. ACM Transactions on Graphics 21, 1–35 (2002)

    Article  Google Scholar 

  17. Kiciak, P.: Podstawy modelowania krzywych i powierzchni. Zastosowania w grafice komputerowej. Wydawnictwa Naukowo-Techniczne (2000)

    Google Scholar 

  18. Jackowski, B.: Co ma Bézier do B-spline’a? Biuletyn GUST 17, 3–12 (2001) (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bugdol, M., Juszczyk, J. (2010). Parametric Curves in Liver Deformation for Laparoscopic Purposes. In: Piȩtka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13105-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13105-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13104-2

  • Online ISBN: 978-3-642-13105-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics