Transformation-Based Framework for the Evaluation and Improvement of Database Schemas

  • Jonathan Lemaitre
  • Jean-Luc Hainaut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6051)


Data schemas are primary artefacts for the development and maintenance of data intensive software systems. As for the application code, one way to improve the quality of the models is to ensure that they comply with best design practices. In this paper, we redefine the process of schema quality evaluation as the identification of specific schema constructs and their comparison with best practices. We provide an overview of a framework based on the use of semantics-preserving transformations as a way to identify, compare and suggest improvement for the most significant best design practices. The validation and the automation of the framework are discussed and some clarifying examples are provided.


Database schema schema evaluation schema improvement schema transformation 


  1. 1.
    Hainaut, J.L.: The transformational approach to database engineering. In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Cleve, A., Lemaitre, J., Hainaut, J.L., Mouchet, C., Henrard, J.: The role of implicit schema constructs in data quality. In: Proc. of the International Workshop on Quality in Databases and Management of Uncertain Data, Auckland, New Zealand, pp. 33–40 (2008)Google Scholar
  3. 3.
    Genero, M., Piattini, M., Manso, M.E.: Finding “early” indicators of uml class diagrams understandability and modifiability. In: ISESE, pp. 207–216. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  4. 4.
    Manso, M.E., Genero, M., Piattini, M.: No-redundant metrics for uml class diagram structural complexity. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 127–142. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Si-Said Cherfi, S., Akoka, J., Comyn-Wattiau, I.: Perceived vs. measured quality of conceptual schemas: An experimental comparison. In: ER (Tutorials, Posters, Panels & Industrial Contributions), pp. 185–190. Australian Computer Society (2007)Google Scholar
  6. 6.
    Codd, E.F.: Normalized data structure: A brief tutorial. In: SIGFIDET Workshop, pp. 1–17. ACM, New York (1971)CrossRefGoogle Scholar
  7. 7.
    Kent, W.: A simple guide to five normal forms in relational database theory. Commun. ACM 26(2), 120–125 (1983)CrossRefGoogle Scholar
  8. 8.
    Assenova, P., Johannesson, P.: Improving quality in conceptual modelling by the use of schema transformations. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 277–291. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Burton-Jones, A., Weber, R.: Understanding relationships with attributes in entity-relationship diagrams. In: ICIS 1999: Proc. of the 20th international conference on Information Systems, Atlanta, GA, USA, pp. 214–228 (1999)Google Scholar
  10. 10.
    Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: comparison of mandatory and optional properties. Data Knowl. Eng. 55(3), 301–326 (2005)CrossRefGoogle Scholar
  11. 11.
    Bouhours, C., Leblanc, H., Percebois, C.: Alternative models for a design review activity. In: Proc. of the 2nd workshop on Quality in Modeling, Nashville, TN (USA), pp. 65–79. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Kurtev, I.: Adaptability of model transformations. PhD thesis, University of Twente, Enschede (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan Lemaitre
    • 1
  • Jean-Luc Hainaut
    • 1
  1. 1.Laboratory of Database Application Engineering - PReCISE research Center, Faculty of Computer ScienceUniversity of NamurNamurBelgium

Personalised recommendations