Advertisement

Supporting Semantic Search on Heterogeneous Semi-structured Documents

  • Yassine Mrabet
  • Nacéra Bennacer
  • Nathalie Pernelle
  • Mouhamadou Thiam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6051)

Abstract

This paper presents SHIRI-Querying, an approach for semantic search on semi-structured documents. We propose a solution to tackle incompleteness and imprecision of semantic annotations of semistructured documents at querying time. We particularly introduce three elementary reformulations that rely on the notion of aggregation and on the document structure. We present the Dynamic Reformulation and Execution of Queries algorithm (DREQ) which combines these elementary transformations to construct reformulated queries w.r.t. a defined order relation. Experiments on two real datasets show that these reformulations greatly increase the recall and that returned answers are effectively ranked according to their precision.

Keywords

Semantic Relation Domain Ontology User Query Semantic Annotation Annotation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Borislav, P., Atanas, K., Angel, K., Dimitar, M., Damyan, O., Miroslav, G.: KIM - Semantic Annotation Platform. J. of Nat. Lang. Engineering 10(3-4), 375–392 (2004)CrossRefGoogle Scholar
  2. 2.
    Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland, S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence 165(1), 91–134 (2005)CrossRefGoogle Scholar
  3. 3.
    Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid Serach: Effectively Combining Keywords and Semantic Searches. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Corby, O., Dieng-Kuntz, R., Gandon, F., Faron-Zucker, C.: Searching the semantic web: Approximate query processing based on ontologies. IEEE Intelligent Systems Journal, Computer Society 21(1), 20–27 (2006)CrossRefGoogle Scholar
  5. 5.
    Thiam, M., Bennacer, N., Pernelle, N., Lo, M.: Incremental Ontology-Based Extraction and Alignment in Semi-Structured Documents. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 611–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Hurtado, C.-A., Poulovassilis, A., Wood, P.-T.: A Relaxed Approach to RDF Querying. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 314–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Castells, P., Fernàndez, M., Vallet, D.: An adaptation of the vector-space model for ontology-based information retreival. IEEE T. on Know. and Data Eng. 19(2) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yassine Mrabet
    • 1
    • 2
  • Nacéra Bennacer
    • 2
  • Nathalie Pernelle
    • 1
  • Mouhamadou Thiam
    • 1
    • 2
  1. 1.LRI, Université Paris-Sud 11, INRIA SaclayOrsay cedexFrance
  2. 2.SUPELEC Systems Sciences (E3S)Gif-sur-Yvette cedexFrance

Personalised recommendations