Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases

  • Tor Stålhane
  • Guttorm Sindre
  • Lydie du Bousquet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6051)


Safety is of growing importance for information systems due to increased integration with embedded systems. Discovering potential hazards as early as possible in the development is key to avoid costly redesign later. This implies that hazards should be identified based on the requirements, and it is then useful to compare various specification techniques to find out the strengths and weaknesses of each with respect to finding and documenting hazards. This paper reports on two experiments in hazards identification – one experiment based on textual use cases and one based on systems sequence diagrams. The comparison of the experimental results reveal that use cases are better for identifying hazards related to the operation of the system while system sequence diagrams are better for the identification of hazards related to the system itself. The combination of these two techniques is therefore likely to uncover more hazards than one technique alone.


safety analysis sequence diagrams misuse cases experiment 


  1. 1.
    Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things. Scientific American 291(44), 76–81 (2004)CrossRefGoogle Scholar
  2. 2.
    Batra, D., Hoffer, J.A., Bostrom, R.P.: Comparing Representations with Relational and EER Models. Communications of the ACM 33, 126–139 (1990)CrossRefGoogle Scholar
  3. 3.
    Cheng, P.C.-H.: Why Diagrams Are (Sometimes) Six Times Easier than Words: Benefits beyond Locational Indexing. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 242–260. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words. Cognitive Science 11 (1987)Google Scholar
  5. 5.
    Boekelder, A., Steehouder, M.: Selecting and Switching: Some Advantages of Diagrams over Tables and Lists for Presenting Instructions. IEEE Transactions on Professional Communication 41, 229–241 (1998)CrossRefGoogle Scholar
  6. 6.
    Allmendinger, L.: Diagrams and Design Tools in Context. ACM SIGDOC Asterisk Journal of Computer Documentation 18, 25–41 (1994)CrossRefGoogle Scholar
  7. 7.
    Coll, R.A., Coll, J.H., Thakur, G.: Graphs and tables: a four factor experiment. Communications of the ACM 37, 77–84 (1994)CrossRefGoogle Scholar
  8. 8.
    Guiochet, J., Vilchis, A.: Safety Analysis of a Medical Robot for Tele-echographyGoogle Scholar
  9. 9.
    Long, Z., Jinglun, Z.: Analysis and Study of System Safety Based on Event Sequence Diagram. International Journal of Computer Science and Network Security 8(2) (February 2008)Google Scholar
  10. 10.
    Ren, C.: A Safety Inspection Management System for Mine equipment Based on UML. In: 2009 International Conference on Signal Processing Systems (2009)Google Scholar
  11. 11.
    Allenby, K., Kelly, T.: Deriving Safety Requirements Using Scenarios. In: Proc. RE 2001, Toronto, Canada, August 27-31. IEEE, Los Alamitos (2001)Google Scholar
  12. 12.
    Alspaugh, T.A., et al.: Clarity for Stakeholders: Empirical Evaluation of ScenarioML, Use cases and Sequence Diagrams. In: Fifth International Workshop on Comparative Evaluation in Requirements Engineering (2007)Google Scholar
  13. 13.
    Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases. Requirements Engineering 10, 34–44 (2005)CrossRefGoogle Scholar
  14. 14.
    Alexander, I.F.: Misuse Cases, Use Cases with Hostile Intent. IEEE Software 20, 58–66 (2003)CrossRefGoogle Scholar
  15. 15.
    Larman, C.: Applying UML and Patterns – An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3rd edn. Pearson Education Inc., London, ISBN 0-13-148906-2Google Scholar
  16. 16.
    Pender, T.: UML Bible, Wiley Publishing Inc., Indianapolis, Indiana, US (2003), ISBN 0-7645-2604-9Google Scholar
  17. 17.
    Stålhane, T., Sindre, G.: A comparison of two approaches to safety analysis based on use cases. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 423–437. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Stålhane, T., Sindre, G.: Safety Hazard Identification by Misuse Cases: Experimental Comparison of Text and Diagrams. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 721–735. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering: An Introduction. Kluwer Academic, Norwell (2000)zbMATHGoogle Scholar
  20. 20.
    Tukey, J.W.: Data analysis and behavioral science or learning to bear the quantitative man burden by shunning badmandments. In: Jones, L.W. (ed.) The Collected Works of John W. Tukey, Wadsworth, Monterey, CA, vol. III, pp. 187–389 (1986)Google Scholar
  21. 21.
    Achour, C.B., et al.: Guiding Use Case Authoring: Results of an Empirical Study. In: Proceedings of the 4th IEEE International Symposium on Requirements Engineering – RE 1999, Limerick, Ireland (1999)Google Scholar
  22. 22.
    Cox, K., Phalp, K.: Replicating the CREWS use case Authoring Guidelines Experiment. Empirical Software Engineering 5, 245–267 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tor Stålhane
    • 1
  • Guttorm Sindre
    • 1
  • Lydie du Bousquet
    • 2
  1. 1.Dept of Computer and Info. ScienceNorwegian Univ. of Sci. and Tech (NTNU) 
  2. 2.Laboratoire d’Informatique de Grenoble (LIG) 

Personalised recommendations