Advertisement

A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

  • Pablo Arrighi
  • Jonathan Grattage
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)

Abstract

We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.

Keywords

Cellular Automaton Turing Machine Cellular Automaton Quantum Circuit Quantum Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, J., Culik, K.: A simple universal cellular automaton and its one-way and totalistic version. Complex Systems 1, 1–16 (1987)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Arrighi, P.: Algebraic characterizations of unitary linear quantum cellular automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 122–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Arrighi, P., Fargetton, R.: Intrinsically universal one-dimensional quantum cellular automata. In: Proceedings of the Development of Computational Models workshop, DCM ’07 (2007)Google Scholar
  4. 4.
    Arrighi, P., Fargetton, R., Wang, Z.: Intrinsically universal one-dimensional quantum cellular automata in two flavours. Fundamenta Informaticae 21, 1001–1035 (2009)MathSciNetGoogle Scholar
  5. 5.
    Arrighi, P., Grattage, J.: Intrinsically universal n-dimensional quantum cellular automata. Extended version of this paper. ArXiv preprint: arXiv:0907.3827 (2009)Google Scholar
  6. 6.
    Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal (2009) (submitted)Google Scholar
  7. 7.
    Arrighi, P., Grattage, J.: Two minimal n-dimensional intrinsically universal quantum cellular automata (2009) (manuscript)Google Scholar
  8. 8.
    Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. Quantum Information Processing (QIP) 2010, ArXiv preprint: arXiv:0711.3975 (2007)Google Scholar
  9. 9.
    Arrighi, P., Nesme, V., Werner, R.F.: Quantum cellular automata over finite, unbounded configurations. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 64–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Banks, E.R.: Universality in cellular automata. In: Proceedings of the 11th Annual Symposium on Switching and Automata Theory (SWAT ’70), Washington, DC, USA, pp. 194–215. IEEE Computer Society, Los Alamitos (1970)CrossRefGoogle Scholar
  11. 11.
    Brennen, G.K., Williams, J.E.: Entanglement dynamics in one-dimensional quantum cellular automata. Phys. Rev. A 68(4), 042311 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)CrossRefGoogle Scholar
  13. 13.
    Durand, B., Roka, Z.: The Game of Life: universality revisited, Research Report 98-01. Technical report, Ecole Normale Suprieure de Lyon (1998)Google Scholar
  14. 14.
    Durand-Lose, J.O.: Reversible cellular automaton able to simulate any other reversible one using partitioning automata. In: Baeza-Yates, R., Poblete, P.V., Goles, E. (eds.) LATIN 1995. LNCS, vol. 911, pp. 230–244. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Durand-Lose, J.O.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, p. 439. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Durr, C., Le Thanh, H., Santha, M.: A decision procedure for well-formed linear quantum cellular automata. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 281–292. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Feynman, R.P.: Quantum mechanical computers. Foundations of Physics (Historical Archive) 16(6), 507–531 (1986)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lloyd, S.: A theory of quantum gravity based on quantum computation. ArXiv preprint: quant-ph/0501135 (2005)Google Scholar
  19. 19.
    Margolus, N.: Physics-like models of computation. Physica D: Nonlinear Phenomena 10(1-2) (1984)Google Scholar
  20. 20.
    Margolus, N.: Parallel quantum computation. In: Complexity, Entropy, and the Physics of Information: The Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics of Information, Santa Fe, New Mexico, Perseus Books, May-June 1989, p. 273 (1990)Google Scholar
  21. 21.
    Mazoyer, J., Rapaport, I.: Inducing an order on cellular automata by a grouping operation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 116–127. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoretical Computer Science 148(1), 157–163 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. IEICE Trans. Inf. & Syst., E 72, 758–762 (1989)Google Scholar
  24. 24.
    Morita, K., Ueno, S.: Computation-universal models of two-dimensional 16-state reversible cellular automata. IEICE Trans. Inf. & Syst., E 75, 141–147 (1992)Google Scholar
  25. 25.
    Nagaj, D., Wocjan, P.: Hamiltonian Quantum Cellular Automata in 1D. ArXiv preprint: arXiv:0802.0886 (2008)Google Scholar
  26. 26.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (October 2000)zbMATHGoogle Scholar
  27. 27.
    Ollinger, N.: Universalities in cellular automata a (short) survey. In: Durand, B. (ed.) Proceedings of First Symposium on Cellular Automata Journées Automates Cellulaires (JAC 2008), Uzès, France, April 21-25, pp. 102–118. MCCME Publishing House, Moscow (2008)Google Scholar
  28. 28.
    Ollinger, N., Richard, G.: A Particular Universal Cellular Automaton. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) CSP, pp. 267–278. Cork University Press (2008)Google Scholar
  29. 29.
    Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. Lecture Notes in Physics, pp. 77–140 (2002)Google Scholar
  30. 30.
    Pérez-Delgado, C., Cheung, D.: Local unitary quantum cellular automata. Physical Review A 76(3), 32320 (2007)CrossRefGoogle Scholar
  31. 31.
    Raussendorf, R.: Quantum cellular automaton for universal quantum computation. Phys. Rev. A 72(022301) (2005)Google Scholar
  32. 32.
    Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174 (2004)Google Scholar
  33. 33.
    Shepherd, D.J., Franz, T., Werner, R.F.: A universally programmable quantum cellular automata. Phys. Rev. Lett. 97(020502) (2006)Google Scholar
  34. 34.
    Theyssier, G.: Captive cellular automata. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 427–438. Springer, Heidelberg (2004)Google Scholar
  35. 35.
    Toffoli, T.: Computation and construction universality of reversible cellular automata. J. of Computer and System Sciences 15(2) (1977)Google Scholar
  36. 36.
    Van Dam, W.: Quantum cellular automata. Masters thesis, University of Nijmegen, The Netherlands (1996)Google Scholar
  37. 37.
    Vollbrecht, K.G.H., Cirac, J.I.: Reversible universal quantum computation within translation-invariant systems. New J. Phys. Rev. A 73, 012324 (2004)CrossRefGoogle Scholar
  38. 38.
    von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)Google Scholar
  39. 39.
    Watrous, J.: On one-dimensional quantum cellular automata. Complex Systems 5(1), 19–30 (1991)MathSciNetGoogle Scholar
  40. 40.
    Watrous, J.: On one-dimensional quantum cellular automata. In: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 528–537. IEEE Computer Society, Los Alamitos (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pablo Arrighi
    • 1
  • Jonathan Grattage
    • 2
  1. 1.LIGUniversity of GrenobleFrance
  2. 2.LIPENS-LyonLyon cedex 07France

Personalised recommendations