Language-Based Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data

  • Fernando Rosa-Velardo
  • Giorgio Delzanno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)


We apply language theory to compare the expressive power of models that extend Petri nets with features like colored tokens and/or whole place operations. Specifically, we consider extensions of Petri nets with transfer and reset operations defined for black indistinguishable tokens (Affine Well-Structured Nets), extensions in which tokens carry pure names dynamically generated with special ν-transitions (ν-APN), and extensions in which tokens carry data taken from a linearly ordered domain (Data nets and CMRS). These models are well-structured transitions systems. In order to compare these models we consider the families of languages they recognize, using coverability as accepting condition. With this criterion, we prove that ν-APNs are in between AWNs and Data Nets/CMRS. Moreover, we prove that the family of languages recognized by ν-APNs satisfies a good number of closure properties, being a semi-full AFL. These results extend the currently known classification of the expressive power of well-structured transition systems with new closure properties and new relations between extensions of Petri nets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P., Delzanno, G.: On the coverability problem for constrained multiset rewriting. In: AVIS, an ETAPS workshop (2006)Google Scholar
  2. 2.
    Abdulla, P.A., Delzanno, G., Begin, L.V.: Comparing the expressive power of well-structured transition systems. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 99–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Delzanno, G., Begin, L.V.: A language-based comparison of extensions of petri nets with and without whole-place operations. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 71–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect channels. Inf. Comput. 124(1), 20–31 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing petri net extensions. Inf. Comput. 195(1-2), 1–29 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Geeraerts, G., Raskin, J.F., Begin, L.V.: Well-structured languages. Acta Inf. 44(3-4), 249–288 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages. Elsevier Science Inc., New York (1975)zbMATHGoogle Scholar
  9. 9.
    Gordon, A.D.: Notes on nominal calculi for security and mobility. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kummer, O.: Undecidability in object-oriented petri nets. Petri Net Newsletter 59, 18–23 (2000)Google Scholar
  11. 11.
    Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens which carry data. Fundam. Inform. 88(3), 251–274 (2008)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  13. 13.
    Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net systems. Fundam. Inform. 88(3), 329–356 (2008)zbMATHGoogle Scholar
  14. 14.
    Rosa-Velardo, F., de Frutos-Escrig, D., Alonso, O.M.: On the expressiveness of mobile synchronizing petri nets. Electr. Notes Theor. Comput. Sci. 180(1), 77–94 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fernando Rosa-Velardo
    • 1
  • Giorgio Delzanno
    • 2
  1. 1.Universidad Complutense de MadridSpain
  2. 2.Università di GenovaItaly

Personalised recommendations