Advertisement

SA-REPC – Sequence Alignment with Regular Expression Path Constraint

  • Nimrod Milo
  • Tamar Pinhas
  • Michal Ziv-Ukelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)

Abstract

In this paper, we define a novel variation on the constrained sequence alignment problem, the Sequence Alignment with Regular Expression Path Constraint problem, in which the constraint is given in the form of a regular expression. Our definition extends and generalizes the existing definitions of alignment-path constrained sequence alignments to the expressive power of regular expressions. We give a solution for the new variation of the problem and demonstrate its application to integrate microRNA-target interaction patterns into the target prediction computation. Our approach can serve as an efficient filter for more computationally demanding target prediction filtration algorithms. We compare our implementation for the SA-REPC problem, cAlign, to other microRNA target prediction algorithms.

Keywords

Regular Expression Target Prediction microRNA Target Probabilistic Automaton MicroRNA Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arslan, A.: Regular expression constrained sequence alignment. Journal of Discrete Algorithms 5(4), 647–661 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bartel, D.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)CrossRefGoogle Scholar
  3. 3.
    Bentwich, I.: Prediction and validation of microRNAs and their targets. FEBS letters 579(26), 5904–5910 (2005)CrossRefGoogle Scholar
  4. 4.
    Bernhart, S., Tafer, H., Mückstein, U., Flamm, C., Stadler, P., Hofacker, I.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms for Molecular Biology 1(1), 3 (2006)CrossRefGoogle Scholar
  5. 5.
    Brennecke, J., Stark, A., Russell, R., Cohen, S.: Principles of MicroRNA–Target Recognition. PLoS Biol. 3(3), e85 (2005)CrossRefGoogle Scholar
  6. 6.
    Crochemore, M., Landau, G., Ziv-Ukelson, M.: A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Computing 32, 1654 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cambridge Univ. Press, Cambridge (1998)zbMATHGoogle Scholar
  8. 8.
    Griffiths-Jones, S., Grocock, R., van Dongen, S., Bateman, A., Enright, A.: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research 34(Database Issue), D140 (2006)CrossRefGoogle Scholar
  9. 9.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (January 1997)zbMATHGoogle Scholar
  10. 10.
    Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (2006)Google Scholar
  12. 12.
    Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp, M., Clarke, L., Coates, G., Cox, T., Cunningham, F., et al.: Ensembl 2005. Nucleic Acids Research 33(Database Issue), D447 (2005)CrossRefGoogle Scholar
  13. 13.
    Jiang, M., Anderson, J., Gillespie, J., Mayne, M.: uShuffle: A useful tool for shuffling biological sequences while preserving the k-let counts. BMC bioinformatics 9(1), 192 (2008)CrossRefGoogle Scholar
  14. 14.
    John, B., Sander, C., Marks, D., et al.: Prediction of human microRNA targets. Methods In Molecular Biology 342, 101 (2006)Google Scholar
  15. 15.
    Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E.: The role of site accessibility in microRNA target recognition. Nature genetics 39(10), 1278–1284 (2007)CrossRefGoogle Scholar
  16. 16.
    Krek, A., Grün, D., Poy, M., Wolf, R., Rosenberg, L., Epstein, E., MacMenamin, P., da Piedade, I., Gunsalus, K., Stoffel, M., et al.: Combinatorial microRNA target predictions. Nature genetics 37(5), 495–500 (2005)CrossRefGoogle Scholar
  17. 17.
    Kucherov, G., Noé, L., Roytberg, M.: Multiseed lossless filtration. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 51–61 (2005)Google Scholar
  18. 18.
    Lewis, B., Burge, C., Bartel, D.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20 (2005)CrossRefGoogle Scholar
  19. 19.
    Lewis, B., Shih, I., Jones-Rhoades, M., Bartel, D., Burge, C.: Prediction of mammalian microRNA targets. Cell 115(7), 787–798 (2003)CrossRefGoogle Scholar
  20. 20.
    Lin, S., Johnson, S., Abraham, M., Vella, M., Pasquinelli, A., Gamberi, C., Gottlieb, E., Slack, F.: The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Developmental Cell 4(5), 639–650 (2003)CrossRefGoogle Scholar
  21. 21.
    Maziere, P., Enright, A.: Prediction of microRNA targets. Drug discovery today 12(11-12), 452–458 (2007)CrossRefGoogle Scholar
  22. 22.
    Miranda, K., Huynh, T., Tay, Y., Ang, Y., Tam, W., Thomson, A., Lim, B., Rigoutsos, I.: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6), 1203–1217 (2006)CrossRefGoogle Scholar
  23. 23.
    Mückstein, U., Tafer, H., Bernhard, S., Hernandez-Rosales, M., Vogel, J., Stadler, P., Hofacker, I.: Translational control by RNA-RNA interaction: Improved computation of RNA-RNA binding thermodynamics. BioInformatics Research and DevelopmentBIRD 13, 114–127 (2008)CrossRefGoogle Scholar
  24. 24.
    Myers, G., Selznick, S., Zhang, Z., Miller, W.: Progressive multiple alignment with constraints. Journal of Computational Biology 3(4), 563–572 (1996)CrossRefGoogle Scholar
  25. 25.
    Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10(10), 1507–1517 (2004)CrossRefGoogle Scholar
  26. 26.
    Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of molecular biology 147(1), 195–197 (1981)CrossRefGoogle Scholar
  27. 27.
    Stark, A., Brennecke, J., Russell, R., Cohen, S.: Identification of Drosophila MicroRNA Targets. PLoS Biol. 1(3), e60 (2003)CrossRefGoogle Scholar
  28. 28.
    Tang, C., Lu, C., Chang, M., Tsai, Y., Sun, Y., Chao, K., Chang, J., Chiou, Y., Wu, C., Chang, H., et al.: Constrained multiple sequence alignment tool development and its application to RNase family alignment. Journal of Bioinformatics and Computational Biology 1(2), 267–288 (2003)CrossRefGoogle Scholar
  29. 29.
    Vella, M., Reinert, K., Slack, F.: Architecture of a validated microRNA: target interaction. Chemistry & Biology 11(12), 1619–1623 (2004)CrossRefGoogle Scholar
  30. 30.
    Wang, X., El Naqa, I.: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3), 325 (2008)CrossRefGoogle Scholar
  31. 31.
    Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., Li, T.: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Research (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nimrod Milo
    • 1
  • Tamar Pinhas
    • 1
  • Michal Ziv-Ukelson
    • 1
  1. 1.Department of Computer ScienceBen-Gurion University of the NegevBe’er ShevaIsrael

Personalised recommendations