Advertisement

Modal Nonassociative Lambek Calculus with Assumptions: Complexity and Context-Freeness

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)

Abstract

We prove that the consequence relation of the Nonassociative Lambek Calculus with S4-modalities (NLS4) is polynomial time decidable and categorial grammars based on NLS4 with finitely many assumptions generate context-free languages. This extends earlier results of Buszkowski [3] for NL and Plummer [16][17] for a weaker version of NLS4 without assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buszkowski, W.: Some decision problems in the theory of syntactic categories. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 539–548 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buszkowski, W.: Generative Capacity of Nonassociative Lambek Calculus. Bulletin of Polish Academy of Sciences 34, 507–516 (1986)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Buszkowski, W.: Lambek Calculus with Nonlogical Axioms. In: Casadio, C., Scott, P.J., Seely, R.A. (eds.) Languages and Grammars Studies in Mathematical Linguistics and Natural Language. Lecture Notes, pp. 77–93. CSLI, Stanfor (2005)Google Scholar
  4. 4.
    Buszkowski, W., Farulewki, M.: Nonassociative Lambek Calculus with Additives and Context-Free Languages. In: Grumberg, O., Kaminski, M., Katz, S., Wintner, S. (eds.) Languages: From Formal to Natural. LNCS, vol. 5533, pp. 45–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Girard, J.Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jäger, G.: On the generative capacity of multi-modal categorial grammars. Research on Language and Computation 1, 105–125 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jäger, G.: Residuation, Structural Rules and Context Freeness. Journal of Logic, Language and Informationn 13, 47–59 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kandulski, M.: The equivalence of Nonassociative Lambek Categorial Grammars and Context-free Grammars. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 52, 34–41 (1988)Google Scholar
  9. 9.
    Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65, 154–170 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its Mathematical Aspects, pp. 168–178. American Mathematical Society, Providence (1961)Google Scholar
  11. 11.
    Lambek, J.: Type Grammars as Pregroups. Grammars 4, 21–39 (2001)zbMATHCrossRefGoogle Scholar
  12. 12.
    Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and Information 5, 349–385 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Morrill, G.: Intensionality and boundedness. Linguistics and Philosopliy 13, 699–726 (1990)CrossRefGoogle Scholar
  14. 14.
    Pentus, M.: Lambek grammars are context-free. In: Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433 (1993)Google Scholar
  15. 15.
    Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357, 186–201 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Plummer, A.: S4 enriched multimodal categorial grammars are context-free. Theoretical Computer Science 388, 173–180 (2007)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Plummer, A.: S4 enriched multimodal categorial grammars are context-free: Corrigendum. Theoretical Computer Science 403, 406–408 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Versmissen, J.: Grammatical Composition: Modes, Models, Modalities. PhD thesis, Universiteit Utrecht (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhe Lin
    • 1
    • 2
  1. 1.Institute of Logic and CognitionSun Yat-sen UniversityGuangzhouChina
  2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicza UniversityPoznànPoland

Personalised recommendations