Advertisement

The Equivalence Problem of Deterministic Multitape Finite Automata: A New Proof of Solvability Using a Multidimensional Tape

  • Alexander A. Letichevsky
  • Arsen S. Shoukourian
  • Samvel K. Shoukourian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)

Abstract

This publication presents a new proof of solvability for the equivalence problem of deterministic multitape finite automata, based on modeling their behavior via a multidimensional tape. It is shown that for a decision on equivalence of two automata it is necessary and sufficient to consider finite sets of their execution trace words built over the mentioned multidimensional tape.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bird, M.: The equivalence problem for deterministic two-tape automata (1973)Google Scholar
  2. 2.
    Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups (1961)Google Scholar
  3. 3.
    Godlevskii, A.B., Letichevskii, A.A., Shukuryan, S.K.: Reducibility of program-scheme functional equivalence on a nondegenerate basis of rank unity to the equivalence of automata with multidimensional tapes (1980)Google Scholar
  4. 4.
    Grigorian, H.A., Shoukourian, S.K.: The equivalence problem of multidimensional multitape automata (2008)Google Scholar
  5. 5.
    Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata (1991)Google Scholar
  6. 6.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems (1959)Google Scholar
  7. 7.
    Shoukourian, A.S.: Equivalence of regular expressions over a partially commutative alphabet (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander A. Letichevsky
    • 1
  • Arsen S. Shoukourian
    • 2
  • Samvel K. Shoukourian
    • 3
  1. 1.Glushkov Institute of CyberneticsNational Academy of Sciences of Ukraine 
  2. 2.Institute for Informatics and Automation ProblemsNational Academy of Sciences of Armenia 
  3. 3.IT Educational and Research CenterYerevan State University 

Personalised recommendations