Post Correspondence Problem with Partially Commutative Alphabets

  • Barbara Klunder
  • Wojciech Rytter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)


We introduce a version of Post Correspondence Problem (PCP, in short) generalized to words over partially commutative alphabets. Several observations are presented about the algorithmic status of the introduced problem. In particular solvability is shown for the partially commutative PCP for two special cases: the binary case of PCP (denoted by PCP(2) ), and the case with one periodic morphism. This extends solvability results for the classical PCP for these cases. Also a weaker version of PCP, named here Weak-PCP, is discussed. This version distinguishes (in the sense of solvability) the case of noncommutative from the case of partially commutative alphabets. We consider also a solvable (though NP-hard) simple version of Weak-PCP. Our solvability results demonstrate the power of Ibarra’s algorithms for reversal bounded multi-counter machines.


Post Correspondence Problem morphism partially commutative alphabet solvability equality set weak equality set reversal bounded multicounter machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clerbout, M., Latteux, M.: Semi-commutations. Information & Computation 73(1), 59–74 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co., Inc., Singapore (1995)Google Scholar
  3. 3.
    Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: The (generalized) Post correspondence problem with lists consisting of two words is decidable. Theor. Comput. Sci. 21, 119–144 (1982)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: On binary equality sets and a solution to the set conjecture in the binary case. Journal of Algebra 85, 76–85 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fundamenta Informaticae 31, 13–26 (1997)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Gibbons, A., Rytter, W.: On the decidability of some problems about rational subsets of free partially commutative monoids. Theor. Comput. Sci. 48(2-3), 329–337 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Halava, V., Harju, T., Hirvensalo, M.: Binary (generalized) Post correspondence problem. Theor. Comput. Sci. 276(1-2), 183–204 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Harju, T., Karhumäki, J.: Morphisms. In: Handbook of formal languages, vol. 1 (1997)Google Scholar
  9. 9.
    Harju, T., Karhumäki, J., Krob, D.: Remarks on generelized Post correspondence problem. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 39–48. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Holub, S.: Binary equality sets are generated by two words. Int. J. Algebra (259), 1–42 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (2001)zbMATHGoogle Scholar
  12. 12.
    Ibarra, O.H., Kim, C.E.: A useful device for showing the solvability of some decision problems. In: STOC ’76: Proceedings of the eighth annual ACM symposium on Theory of computing, pp. 135–140 (1976)Google Scholar
  13. 13.
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kopczyǹski, E.: Personal Communication (2009)Google Scholar
  15. 15.
    Kopczyński, E.: Complexity of problems of commutative grammars, draft (2009)Google Scholar
  16. 16.
    Lasota, S.: Personal Communication (2009)Google Scholar
  17. 17.
    Leroux, J.: A polynomial time Presburger criterion and synthesis for number decision diagrams. In: LICS, pp. 147–156 (2005)Google Scholar
  18. 18.
    Leroux, J.: Personal Communication (2009)Google Scholar
  19. 19.
    Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-Thue systems with a few rules, pp. 523–531 (1996)Google Scholar
  20. 20.
    Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Technical report, Aarhus University (1977)Google Scholar
  21. 21.
    Ochmański, E.: Recognizable Trace Languages, pp. 167–204. World Scientific Publishing Co., Inc., Singapore (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Barbara Klunder
    • 2
  • Wojciech Rytter
    • 1
    • 2
  1. 1.Institute of InformaticsUniversity of WarsawWarszawaPoland
  2. 2.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland

Personalised recommendations