The Copying Power of Well-Nested Multiple Context-Free Grammars

  • Makoto Kanazawa
  • Sylvain Salvati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)


We prove a copying theorem for well-nested multiple context-free languages: if L = { w # w |w ∈ L 0 } has a well-nested m-MCFG, then L has a ‘non-branching’ well-nested m-MCFG. This can be used to give simple examples of multiple context-free languages that are not generated by any well-nested MCFGs.


Primitive Root Derivation Tree Computational Linguistics Tree Transducer Rational Transduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A., Dauchet, M.: Un théorem de duplication pour les forêts algébriques. Journal of Computer and System Science 13, 223–244 (1976)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ehrenfeucht, A., Rozenberg, G.: On some context-free languages that are not deterministic ET0L languages. R.A.I.R.O. Informatique théorique/Theoretical Computer Science 11, 273–291 (1977)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way machines. Journal of Computer and System Sciences 20, 150–202 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Engelfriet, J., Skyum, S.: Copying theorems. Information Processing Letters 4, 157–161 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fisher, M.J.: Grammars with Macro-Like Productions. Ph.D. thesis, Harvard University (1968)Google Scholar
  6. 6.
    Hayashi, T.: On derivation trees of indexed gramamrs —an extension of the uvwxy-theorem—. Publications of the Research Institute for Mathematical Sciences 9, 61–92 (1973)CrossRefGoogle Scholar
  7. 7.
    Hotz, G., Pitsch, G.: On parsing coupled-context-free languages. Thoretical Computer Science 161, 205–253 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ito, M., Katsura, M.: Context-free languages consisting of non-primitive words. International Journal of Computer Mathematics 40, 157–167 (1991)zbMATHCrossRefGoogle Scholar
  9. 9.
    Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky, A.M. (eds.) Natural Language Parsing: Psychological, Computational and Theoretical Perspectives, pp. 206–250. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  10. 10.
    Kanazawa, M.: The convergence of well-nested mildly context-sensitive grammar formalisms. In: An invited talk given at the 14th Conference on Formal Grammar, Bordeaux, France (July 2009),
  11. 11.
    Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory: 13th International Conference, DLT 2009, pp. 312–325. Springer, Berlin (2009)Google Scholar
  12. 12.
    Kuhlmann, M.: Dependency Structures and Lexicalized Grammars. Ph.D. thesis, Saarland University (2007)Google Scholar
  13. 13.
    Michaelis, J.: An additional observation on strict derivational minimalism. In: Rogers, J. (ed.) Proceedings of FG-MoL 2005: The 10th conference on Formal Grammar and the 9th Meeting on Mathematics of Language, pp. 101–111. CSLI Publications, Stanford (2009)Google Scholar
  14. 14.
    Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science 223, 87–120 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rozoy, B.: The Dyck language D1  ∗  is not generated by any matrix grammar of finite index. Information and Computation 74, 64–89 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Satta, G.: Trading independent for synchronized parallelism in finite copying parallel rewriting systems. Journal of Computer and System Sciences 56, 27–45 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and macro grammars. IEICE Transactions on Information and Systems E91–D, 209–221 (2008)CrossRefGoogle Scholar
  18. 18.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shallit, J.: A Second Course in Formal Langauges and Automata Theory. Cambridge University Press, Cambridge (2009)Google Scholar
  20. 20.
    Staudacher, P.: New frontiers beyond context-freeness: DI-grammars and DI-automata. In: 6th Conference of the European Chapter of the Association for Computational Linguistics (EACL ’93), pp. 358–367 (1993)Google Scholar
  21. 21.
    Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of the Association for Computational Linguistics, pp. 104–111 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Makoto Kanazawa
    • 1
  • Sylvain Salvati
    • 2
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.INRIA Bordeaux – Sud-OuestTalenceFrance

Personalised recommendations