A Programming Language Tailored to the Specification and Solution of Differential Equations Describing Processes on Networks

  • Reinhard Hemmerling
  • Katarína Smoleňová
  • Winfried Kurth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)


We present an extension to the graph-transformation based programming language XL that allows easy specification and solution of differential equations on graphs.


State Vector Graph Transformation Rate Vector Node Property Monitor Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Federl, P., Prusinkiewicz, P.: Solving differential equations in developmental models of multicellular structures expressed using L-systems. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 65–72. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Früh, T., Kurth, W.: The hydraulic system of trees: Theoretical framework and numerical simulation. J. Theor. Biol. 201, 251–270 (1999)CrossRefGoogle Scholar
  3. 3.
    Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational Models for Integrative and Developmental Biology. In: Modelling and Simulation of Biological Processes in the Context of Genomics, Hermes (July 2002)Google Scholar
  4. 4.
    Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn. Addison-Wesley, Amsterdam (June 2005)Google Scholar
  5. 5.
    Hemmerling, R., Kniemeyer, O., Lanwert, D., Kurth, W., Buck-Sorlin, G.: The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Functional Plant Biology 35(9/10), 739–750 (2008)CrossRefGoogle Scholar
  6. 6.
    Kniemeyer, O.: Design and Implementation of a Graph Grammar Based Language for Functional-Structural Plant Modelling. PhD thesis, University of Technology at Cottbus, Fakultät für Mathematik, Naturwissenschaften und Informatik (2008),
  7. 7.
    Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational Growth Grammars - a parallel graph transformation approach with applications in biology and architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 152–167. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kniemeyer, O., Hemmerling, R., Kurth, W.: The XL Language Specification (2009),
  9. 9.
    Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3(2), 119–130 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)zbMATHGoogle Scholar
  11. 11.
    Prusinkiewicz, P., Allen, M., Escobar-Gutiérrez, A., DeJong, T.M.: Numerical methods for transport-resistance source-sink allocation models. In: Vos, J., Marcelis, L.F.M., de Visser, P.H.B., Struik, P.C., Evers, J.B. (eds.) Functional-Structural Plant Modelling in Crop Production, 1st edn. Wageningen UR Frontis Series, vol. 22, Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Prusinkiewicz, P., Hammel, M.S., Mjolsness, E.: Animation of plant development. In: SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 351–360. ACM, New York (1993)CrossRefGoogle Scholar
  13. 13.
    Thornley, J.H.M., Johnson, I.R.: Plant and crop modelling: a mathematical approach to plant and crop physiology. Clarendon Press/Oxford University Press, Oxford/New York (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Reinhard Hemmerling
    • 1
  • Katarína Smoleňová
    • 1
  • Winfried Kurth
    • 1
  1. 1.University of GöttingenGöttingenGermany

Personalised recommendations