Geometricity of Binary Regular Languages

  • Jean-Marc Champarnaud
  • Jean-Philippe Dubernard
  • Hadrien Jeanne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)


Our aim is to present an efficient algorithm for checking whether a regular language is geometrical or not, based on specific properties of its minimal automaton. Geometrical languages have interesting theoretical properties and they provide an original model for off-line temporal validation of real-time softwares. As far as implementation is concerned, the regular case is of practical interest, which motivates the design of an efficient geometricity test addressing the family of regular languages. This study generalizes the algorithm designed by the authors for the case of prolongable binary regular languages.


regular language minimal automaton geometrical language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2(4), 301–324 (1990)CrossRefGoogle Scholar
  2. 2.
    Blanpain, B., Champarnaud, J.M., Dubernard, J.P.: Geometrical languages. In: Vide, C.M. (ed.) International Conference on Language Theory and Automata (LATA 2007). GRLMC Universitat Rovira I Virgili, vol. 35 (2007)Google Scholar
  3. 3.
    Champarnaud, J.M., Dubernard, J.P., Jeanne, H.: An efficient algorithm to test whether a binary and prolongeable regular language is geometrical. Int. J. Found. Comput. Sci. 20(4), 763–774 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eilenberg, S.: Automata, languages and machines, vol. B. Academic Press, New York (1976)zbMATHGoogle Scholar
  5. 5.
    Geniet, D., Largeteau, G.: Wcet free time analysis of hard real-time systems on multiprocessors: A regular language-based model. Theor. Comput. Sci. 388(1-3), 26–52 (2007)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies Ann. Math. Studies 34, 3–41 (1956)MathSciNetGoogle Scholar
  7. 7.
    Largeteau-Skapin, G., Geniet, D., Andres, E.: Discrete geometry applied in hard real-time systems validation. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 23–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Myhill, J.: Finite automata and the representation of events. WADD TR-57-624, 112–137 (1957)Google Scholar
  9. 9.
    Nerode, A.: Linear automata transformation. Proceedings of AMS 9, 541–544 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean-Marc Champarnaud
    • 1
  • Jean-Philippe Dubernard
    • 1
  • Hadrien Jeanne
    • 1
  1. 1.LITISUniversity of RouenFrance

Personalised recommendations