Skip to main content

A Novel Approach for Compressing Phylogenetic Trees

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6053))

Included in the following conference series:

Abstract

Phylogenetic trees are tree structures that depict relationships between organisms. Popular analysis techniques often produce large collections of candidate trees, which are expensive to store. We introduce TreeZip, a novel algorithm to compress phylogenetic trees based on their shared evolutionary relationships. We evaluate TreeZip’s performance on fourteen tree collections ranging from 2,505 trees on 328 taxa to 150,000 trees on 525 taxa corresponding to 0.6 MB to 434 MB in storage. Our results show that TreeZip is very effective, typically compressing a tree file to less than 2% of its original size. When coupled with standard compression methods such as 7zip, TreeZip can compress a file to less than 1% of its original size. Our results strongly suggest that TreeZip is very effective at compressing phylogenetic trees, which allows for easier exchange of data with colleagues around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, N., Clarke, F., John, K.S.: A linear-time majority tree algorithm. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 216–227. Springer, Heidelberg (2003)

    Google Scholar 

  2. Boyer, R.S., Hunt Jr., W.A., Nelesen, S.: A compressed format for collections of phylogenetic trees and improved consensus performance. Technical Report TR-05-12, Department of Computer Sciences, The University of Texas at Austin (2005)

    Google Scholar 

  3. Boyer, R.S., Hunt Jr., W.A., Nelesen, S.: A compressed format for collections of phylogenetic trees and improved consensus performance. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 353–364. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Felsenstein, J.: The Newick tree format. Internet Website (last accessed January 2010), Newick, http://evolution.genetics.washington.edu/phylip/newicktree.html

  5. Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754–755 (2001)

    Article  Google Scholar 

  6. Janecka, J.E., Miller, W., Pringle, T.H., Wiens, F., Zitzmann, A., Helgen, K.M., Springer, M.S., Murphy, W.J.: Molecular and genomic data identify the closest living relative of primates. Science 318, 792–794 (2007)

    Article  Google Scholar 

  7. Lewis, L.A., Lewis, P.O.: Unearthing the molecular phylodiversity of desert soil green algae (chlorophyta). Syst. Bio. 54(6), 936–947 (2005)

    Article  Google Scholar 

  8. Molin, A.D., Matthews, S., Sul, S.-J., Munro, J., Woolley, J.B., Heraty, J.M., Williams, T.L.: Large data sets, large sets of trees, and how many brains? – Visualization and comparison of phylogenetic hypotheses inferred from rdna in chalcidoidea (hymenoptera) (poster December 2009), http://esa.confex.com/esa/2009/webprogram/Session11584.html

  9. Soltis, D.E., Gitzendanner, M.A., Soltis, P.S.: A 567-taxon data set for angiosperms: The challenges posed by bayesian analyses of large data sets. Int. J. Plant Sci. 168(2), 137–157 (2007)

    Article  Google Scholar 

  10. Sul, S.-J., Williams, T.L.: An experimental analysis of robinson-foulds distance matrix algorithms. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 793–804. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Sul, S.-J., Williams, T.L.: An experimental analysis of consensus tree algorithms for large-scale tree collections. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNCS, vol. 5542, pp. 100–111. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matthews, S.J., Sul, SJ., Williams, T.L. (2010). A Novel Approach for Compressing Phylogenetic Trees. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds) Bioinformatics Research and Applications. ISBRA 2010. Lecture Notes in Computer Science(), vol 6053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13078-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13078-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13077-9

  • Online ISBN: 978-3-642-13078-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics