Skip to main content

Essential Proteins Discovery from Weighted Protein Interaction Networks

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6053))

Included in the following conference series:

Abstract

Identifying essential proteins is important for understanding the minimal requirements for cellular survival and development. Fast growth in the amount of available protein-protein interactions has produced unprecedented opportunities for detecting protein essentiality on network level. A series of centrality measures have been proposed to discover essential proteins based on network topology. However, most of them treat all interactions equally and are sensitive to false positives. In this paper, six standard centrality measures are redefined to be used in weighted network. A new method for weighing protein-protein interactions is proposed based on the combination of logistic regression-based model and function similarity. The experimental results on yeast network show that the weighting method can improve the performance of centrality measures considerably. More essential proteins are discovered by the weighted centrality measures than by the original centrality measures used in unweighted network. Even about 20% improvements are obtained from closeness centrality and subgraph centrality.

This work is supported in part by the National Natural Science Foundation of China under Grant No.60773111, the Ph.D. Programs Foundation of Ministry of Education of China No. 20090162120073, the U.S. National Science Foundation under Grants CCF-0514750, CCF-0646102, and CNS-0831634, and the Program for Changjiang Scholars and Innovative Research Team in University No. IRT0661.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  2. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Res. 5, 101–114 (2004)

    Article  Google Scholar 

  3. Yook, S., Oltvai, Z., Barabasi, A.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)

    Article  Google Scholar 

  4. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  5. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. 100, 1128–1133 (2003)

    Article  Google Scholar 

  6. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  Google Scholar 

  7. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)

    Article  Google Scholar 

  8. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999)

    Article  Google Scholar 

  9. Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., et al.: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  Google Scholar 

  10. Yu, H., Greenbaum, D., Lu, H.X., Zhu, Z., Gerstein, M.: Genomic analysis of essentiality within protein networks. Trends Genet. 20, 227–231 (2004)

    Article  Google Scholar 

  11. Hahn, M. W., Kern, A.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22(4), 803–806 (2005)

    Article  Google Scholar 

  12. Wuchty, S.: Interaction and domain networks of yeast. Proteomics 2, 1715–1723 (2002)

    Article  Google Scholar 

  13. Jeong, H., Mason, S., Barabási, A., Oltvai, Z.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  14. Batada, N.N., Hurst, L.D., Tyers, M.: Evolutionary and physiological importance of hub proteins. PLoS Comput. Biol. 2(7), e88 (2006) doi:10.1371/ journal.pcbi.0020088

    Article  Google Scholar 

  15. Coulomb, S., Bauer, M., Bernard, D., Marsolier-Kergoat, M.: Gene essentiality and the topology of protein interaction networks. Proc. R. Soc. B 272, 1721–1725 (2005)

    Article  Google Scholar 

  16. He, X.L., Zhang, J.Z.: Why Do Hubs Tend to Be Essential in Protein Networks? PLoS Genetics 2(6), 826–834 (2006)

    Article  Google Scholar 

  17. Zotenko, E., Mestre, J., O’Leary, D.P., Przytycka, T.M.: Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality. PLoS Computational Biology 4(8), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  18. Vallabhajosyula, R., Chakravarti, D., Lutfeali, S., Ray, A., Raval, A.: Identifying Hubs in Protein Interaction Networks. Plos One 4(4), 1–10 (2009)

    Article  Google Scholar 

  19. Ernesto, E.: Virtual identification of essential proteins within the protein interaction network of yeast (2005) http://arxiv.org/abs/q-bio.MN/0505007

  20. Narayanan, S.: The betweenness centrality of biological networks. Master of Science in Computer Science. Virginia Polytechnic Institute and State University (September 16, 2005)

    Google Scholar 

  21. Joy, M., et al.: High-betweenness proteins in the yeast protein interaction network. Journal of Biomedicine and Biotechnology 2, 96–103 (2005)

    Article  Google Scholar 

  22. Wuchty, S., Stadler, P.: Centers of complex networks. Journal of Theoretical Biology 223, 45–53 (2003)

    Article  MathSciNet  Google Scholar 

  23. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E. 71(5) (2005)

    Google Scholar 

  24. Bonacich, P.F.: Power and centrality: A family of measures. American Journal of Sociology 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  25. Stevenson, K., Zelen, M.: Rethinking centrality: Methods and examples. Social Networks 11, 1–37 (1989)

    Article  MathSciNet  Google Scholar 

  26. Gerdes, S., Edwards, R., Kubal, M., Fonstein, M., Stevens, R., Osterman, A.: Essential genes on metabolic maps. Curr. Opin. Biotechnol. 17, 448–456 (2006)

    Article  Google Scholar 

  27. Becker, S.A., Palsson, B.O.: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 5, 8 (2005)

    Article  Google Scholar 

  28. Lamichhane, G., Zignol, M., Blades, N.J., Geiman, D.E., Dougherty, A., Grosset, J., Broman, K.W., Bishai, W.R.: A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. PNAS 100(12), 7213–7218 (2003)

    Article  Google Scholar 

  29. von Mering, C., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  30. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics, 7–488 (2006)

    Google Scholar 

  31. Jacob, R., Koschtzki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for Centrality Indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 62–82. Springer, Heidelberg (2005)

    Google Scholar 

  32. Mason, O., Verwoerd, M.: Graph theory and networks in biology. IET Systems Biology 1(2), 89–119 (2006)

    Article  Google Scholar 

  33. Mewes, H.W., Amid, C., Arnold, R., et al.: MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research 32, D41–D44 (2004)

    Article  Google Scholar 

  34. Sharan, R., et al.: Conserved patterns of protein interaction in multiple species. PNAS 102(6), 1974–1979 (2005)

    Article  Google Scholar 

  35. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics, 7–199 (2006)

    Google Scholar 

  36. Resnik, P.: Using information content to evaluate semantic similarity in taxonomy. In: Proc. the 14th International Joint Conference on Artificial Intelligence, pp. 448–453 (1995)

    Google Scholar 

  37. Lin, D.: An information-theoretic definition of similarity. In: Proc.of 15th International Conference on Machine Learning, pp. 296–304 (1998)

    Google Scholar 

  38. Lei, Z., Dai, Y.: Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction. BMC Bioinformatics 7, 491 (2006)

    Article  Google Scholar 

  39. http://dip.doe-mbi.ucla.edu/

  40. Issel-Tarver, L., Christie, K.R., Dolinski, K., et al.: Saccharomyces Genome Database. Methods Enzymol. 350, 329–346 (2002)

    Article  Google Scholar 

  41. Holman, A.G., Davis, P., Foster, J.M., et al.: Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi. BMC Microbiology 9, 243 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Wang, J., Wang, H., Pan, Y. (2010). Essential Proteins Discovery from Weighted Protein Interaction Networks. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds) Bioinformatics Research and Applications. ISBRA 2010. Lecture Notes in Computer Science(), vol 6053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13078-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13078-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13077-9

  • Online ISBN: 978-3-642-13078-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics