Skip to main content

Improved Approximations for TSP with Simple Precedence Constraints

(Extended Abstract)

  • Conference paper
Algorithms and Complexity (CIAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6078))

Included in the following conference series:

Abstract

In this paper, we consider variants of the traveling salesman problem with precedence constraints. We characterize hard input instances for Christofides’ algorithm and Hoogeveen’s algorithm by relating the two underlying problems, i. e., the traveling salesman problem and the problem of finding a minimum-weight Hamiltonian path between two prespecified vertices. We show that the sets of metric worst-case instances for both algorithms are disjoint in the following sense. There is an algorithm that, for any input instance, either finds a Hamiltonian tour that is significantly better than 1.5-approximative or a set of Hamiltonian paths between all pairs of endpoints, all of which are significantly better than 5/3-approximative.

In the second part of the paper, we give improved algorithms for the ordered TSP, i. e., the TSP, where the precedence constraints are such that a given subset of vertices has to be visited in some prescribed linear order. For the metric case, we present an algorithm that guarantees an approximation ratio of 2.5 − 2/k, where k is the number of ordered vertices. For near-metric input instances satisfying a β-relaxed triangle inequality, we improve the best previously known ratio to \(k\beta^{\log_2 (3k-3)}\).

The research was partially funded by the ANR-projects “ALADDIN” and “IDEA”, the INRIA project “CEPAGE”, and by SNF grant 200021-109252.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38(2), 59–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandelt, H.J., Crama, Y., Spieksma, F.C.R.: Approximation algorithms for multi-dimensional assignment problems with decomposable costs. Discrete Appl. Math. 49(1-3), 25–50 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böckenhauer, H.-J., Hromkovič, J., Kneis, J., Kupke, J.: On the approximation hardness of some generalizations of TSP (extended abstract). In: Arge, L., Freivalds, R.V. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 184–195. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Tech. Rep. 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976)

    Google Scholar 

  5. Eppstein, D.: Paired approximation problems and incompatible inapproximabilities. In: Charikar, M. (ed.) Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1076–1086. SIAM, New York (2010)

    Chapter  Google Scholar 

  6. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and Its Variations. Combinatorial Optimization. Springer, New York (2007)

    MATH  Google Scholar 

  8. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28(4), 422–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10(5), 291–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sahni, S., Gonzalez, T.F.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)

    MathSciNet  MATH  Google Scholar 

  11. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid approach. In: Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 1–10. SIAM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Böckenhauer, HJ., Klasing, R., Mömke, T., Steinová, M. (2010). Improved Approximations for TSP with Simple Precedence Constraints. In: Calamoneri, T., Diaz, J. (eds) Algorithms and Complexity. CIAC 2010. Lecture Notes in Computer Science, vol 6078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13073-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13073-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13072-4

  • Online ISBN: 978-3-642-13073-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics