Skip to main content

A Survey on Statistical Relational Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6085))

Abstract

The vast majority of work in Machine Learning has focused on propositional data which is assumed to be identically and independently distributed, however, many real world datasets are relational and most real world applications are characterized by the presence of uncertainty and complex relational structure where the data distribution is neither identical nor independent. An emerging research area, Statistical Relational Learning(SRL), attempts to represent, model, and learn in relational domain. Currently, SRL is still at a primitive stage in Canada, which motivates us to conduct this survey as an attempt to raise more attention to this field. Our survey presents a brief introduction to SRL and a comparison with conventional learning approaches. In this survey we review four SRL models(PRMs, MLNs, RDNs, and BLPs) and compare them theoretically with respect to their representation, structure learning, parameter learning, and inference methods. We conclude with a discussion on limitations of current methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besag, J.: Statistical analysis of non-lattice data. The Statistician 24(3), 179–195 (1975)

    Article  MathSciNet  Google Scholar 

  2. Casella, G., George, E.I.: Explaining the gibbs sampler. The American Statistician 46(3), 167–174 (1992)

    Article  MathSciNet  Google Scholar 

  3. De Raedt, L., Dehaspe, L.: Clausal discovery. Mach. Learn. 26(2-3), 99–146 (1997)

    Article  MATH  Google Scholar 

  4. Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational learning. In: Introduction to Statistical Relational Learning [9], ch. 12, pp. 339–367 (2007)

    Google Scholar 

  5. Edgeworth, F.Y.: On the probable errors of frequency-constants (contd.). Journal of the Royal Statistical Society 71(3), 499–512 (1908)

    Article  Google Scholar 

  6. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed world reasoning are \(\pi^p_2\)-complete. Theoretical Computer Science 114, 231–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Flake, G.W., Lawrence, S., Lee Giles, C.: Efficient identification of web communities. In: KDD 2000: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 150–160. ACM, New York (2000)

    Chapter  Google Scholar 

  8. Getoor, L., Friedman, N., Koller, D., Pfeffer, A., Taskar, B.: Probabilistic relational models. In: Introduction to Statistical Relational Learning [9]

    Google Scholar 

  9. Getoor, L., Tasker, B.: Introduction to statistical relational learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  10. Heckerman, D.: A tutorial on learning with bayesian networks. In: NATO ASI on Learning in graphical models, pp. 301–354 (1998)

    Google Scholar 

  11. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C., Kaelbling, P.: Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research 1, 49–75 (2000)

    Article  Google Scholar 

  12. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational learning (2002). In: Proceedings of the 19th International Conference on Machine Learning (2002)

    Google Scholar 

  13. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 593–598 (2004)

    Google Scholar 

  14. Jordan, M.: Graphical models. Statistical Science (Special Issue on Bayesian Statistics) 19, 140–155 (2004)

    MATH  Google Scholar 

  15. Kersting, K., de Raedt, L.: Bayesian logic programming: Theory and tool. In: Introduction to Statistical Relational Learning [9]

    Google Scholar 

  16. Zettlemoyer, L.S., Leslie, M.H., Kristian, P.K., Kersting, B.M.: Reasoning about large populations with lifted probabilistic inference. In: NIPS Workshop (2008)

    Google Scholar 

  17. Lauritzen, S.L.: Graphical Models. Oxford Statistical Science Series. Oxford University Press, USA (July 1996)

    Google Scholar 

  18. Muggleton, S.: Inductive logic programming. New Gen. Comput. 8(4), 295–318 (1991)

    Article  MATH  Google Scholar 

  19. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of Uncertainty in AI, pp. 467–475 (1999)

    Google Scholar 

  20. Nevile, J., Jensen, D.: Relational dependency networks. In: An Introduction to Statistical Relational Learning [9]

    Google Scholar 

  21. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Google Scholar 

  22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  23. Taskar, B., Wong, M., Abbeel, P., Koller, D.: Link prediction in relational data (2004)

    Google Scholar 

  24. Ullman, J.D.: Principles of database systems, Vol. 2. Computer Science Press, Rockville (1982)

    Google Scholar 

  25. Wang, Y., Wang, Y., Kitsuregawa, M.: Link based clustering of web search results. LNCS, pp. 225–236. Springer, Heidelberg (2001)

    Google Scholar 

  26. Weiss, Y.: Correctness of local probability propagation in graphical models with loops. Neural Comput. 12(1), 1–41 (2000)

    Article  MATH  Google Scholar 

  27. Winkler, W.: The state of record linkage and current research problems (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khosravi, H., Bina, B. (2010). A Survey on Statistical Relational Learning. In: Farzindar, A., Kešelj, V. (eds) Advances in Artificial Intelligence. Canadian AI 2010. Lecture Notes in Computer Science(), vol 6085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13059-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13059-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13058-8

  • Online ISBN: 978-3-642-13059-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics