Skip to main content

Eigenvalue Techniques for Convex Objective, Nonconvex Optimization Problems

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6080))

Abstract

A fundamental difficulty when dealing with a minimization problem given by a nonlinear, convex objective function over a nonconvex feasible region, is that even if we can efficiently optimize over the convex hull of the feasible region, the optimum will likely lie in the interior of a high dimensional face, “far away” from any feasible point, yielding weak bounds. We present theory and implementation for an approach that relies on (a) the S-lemma, a major tool in convex analysis, (b) efficient projection of quadratics to lower dimensional hyperplanes, and (c) efficient computation of combinatorial bounds for the minimum distance from a given point to the feasible set, in the case of several significant optimization problems. On very large examples, we obtain significant lower bound improvements at a small computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Tal, A., Nemirovsky, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  2. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Programming 74, 121–140 (1996)

    MathSciNet  Google Scholar 

  3. Bienstock, D., Zuckerberg, M.: Subset algebra lift algorithms for 0-1 integer programming. SIAM J. Optimization 105, 9–27 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Bienstock, D., McClosky, B.:Tightening simple mixed-integer sets with guaranteed bounds (submitted 2008)

    Google Scholar 

  5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  6. Cook, W., Kannan, R., Schrijver, A.: Chv’atal closures for mixed integer programs. Math. Programming 47, 155–174 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Farias, I., Johnson, E., Nemhauser, G.: A polyhedral study of the cardinality constrained knapsack problem. Math. Programming 95, 71–90 (2003)

    Article  Google Scholar 

  8. Golub, G.H.: Some modified matrix eigenvalue problems. SIAM Review 15, 318–334 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golub, G.H., van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programming 106, 225–236 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frangioni, A., Gentile, C.: SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable MIQP. Oper. Research Letters 35, 181–185 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Günlük, O., Linderoth, J.: Perspective Relaxation of Mixed Integer Nonlinear Programs with Indicator Variables. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 1–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Moghaddam, B., Weiss, Y., Avidan, S.: Generalized spectral bounds for sparse LDA. In: Proc. 23rd Int. Conf. on Machine Learning, pp. 641–648 (2006)

    Google Scholar 

  14. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MATH  Google Scholar 

  15. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Review 49, 371–418 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Program 77, 273–299 (1997)

    MathSciNet  Google Scholar 

  17. Stern, R.J., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5, 286–313 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sturm, J., Zhang, S.: On cones of nonnegative quadratic functions. Mathematics of Operations Research 28, 246–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Miller, W., Wright, S., Zhang, Y., Schuster, S., Hayes, V.: Optimization methods for selecting founder individuals for captive breeding or reintroduction of endangered species (2009) (manuscript)

    Google Scholar 

  20. Yakubovich, V.A.: S-procedure in nonlinear control theory, vol. 1, pp. 62–77. Vestnik Leningrad University (1971)

    Google Scholar 

  21. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14, 245–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bienstock, D. (2010). Eigenvalue Techniques for Convex Objective, Nonconvex Optimization Problems. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13036-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13035-9

  • Online ISBN: 978-3-642-13036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics