Skip to main content

Combining Adaptive with Artificial Intelligence and Nonlinear Methods for Fault Tolerant Control

  • Conference paper
Book cover Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

In this article different schemes for Fault Tolerant Control (FTC) based on Adaptive Control, Artificial Intelligence (AI) and Robust Control are proposed. These schemes includes a Model Reference Adaptive Controller with a Neural Network and a PID controller optimized by a Genetic Algorithm (MRAC-PID-NN), a Model Reference Adaptive Controller with a Sliding Mode Control (MRAC-SMC) and a classical Model Reference Adaptive Controller (MRAC). In order to compare the performance of these schemes, an Industrial Heat Exchanger was used as test bed in which two different types of faults (abrupt and gradual) with different magnitudes (10% and 20%) were simulated. The simulation results showed that the use of AI methods improves the FTC schemes, developing a robust control system against sensor faults and a wider threshold to accommodate actuator faults in comparison with the two other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, D.L., Chang, T., Yu, D.W.: Fault Tolerant Control of Multivariable Processes Using Auto-Tuning PID Controller. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 32–43 (2005)

    Google Scholar 

  2. Stengel, R.: Intelligent failure-tolerant control. IEEE Control System Magazine 11, 14–23 (1991)

    Article  Google Scholar 

  3. Nieto, J., Garza-Castañón, L., Rabhi, A., El Hajjaji, A., Morales-Menendez, R.: Vehicle Fault Detection and Diagnosis combining AANN and ANFIS. In: 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, pp. 1079–1084 (2009)

    Google Scholar 

  4. Panagi, P., Polycarpou, M.: Decentralized Fault Accommodation of a Class of Interconnected Nonlinear Systems using an Adaptive Approximation Approach. In: 17th Mediterranean Conference on Control & Automation, Thessaloniki, Greece, pp. 546–551 (2009)

    Google Scholar 

  5. Polycarpou, M.: Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach. IEEE Transactions on Automatic Control 46(5), 736–742 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Pashilkar, A., Sundararajan, N., Saratchandran, P.: A Fault-tolerant Neural Aided Controller for Aircraft Auto-landing. Aerospace Science and Technology 10, 49–61 (2006)

    Article  Google Scholar 

  7. Perhinschi, M., Napolitano, M., Campa, G., Fravolini, M., Seanor, B.: Integration of Sensor and Actuator Failure Detection, Identification, and Accommodation Schemes within Fault Tolerant Control Laws. Control and Intelligent Systems 35(4), 309–318 (2007)

    Article  MATH  Google Scholar 

  8. Patan, K., Korbicz, J.: Fault detection and accommodation by means of neural networks. Application to the boiler unit. In: 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, pp. 119–124 (2009)

    Google Scholar 

  9. Lian, J., Zhao, J., Dimirovski, G.: Model Reference Adaptive Integral Sliding Mode Control for Switched Delay Systems. International Journal of Innovative Computing, Information and Control, 2025–2032 (2008)

    Google Scholar 

  10. Nagrath, J.: Control Systems Engineering. Anshan Ltd, Indian Institute of Technology, Delhi (2006)

    Google Scholar 

  11. Whitaker, H., Yamron, J., Kezer, A.: Design of Model Reference Adaptive Control Systems for Aircraft, Report R-164. Instrumentation Laboratory. MIT Press, Cambridge (1958)

    Google Scholar 

  12. Nguyen, H., Nadipuren, P., Walker, C., Walker, E.: A First Course in Fuzzy and Neural Control. CRC Press Company, United States (2002)

    Book  Google Scholar 

  13. Mitchell, M.: An introduction to genetic algorithms. MIT Press, Massachusetts (1996)

    Google Scholar 

  14. Khalil, H.: Nonlinear Systems. Prentice Hall, United States (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vargas-Martínez, A., Garza-Castañón, L.E. (2010). Combining Adaptive with Artificial Intelligence and Nonlinear Methods for Fault Tolerant Control. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13033-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13033-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13032-8

  • Online ISBN: 978-3-642-13033-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics