Skip to main content

Spheroidal and Toroidal Normal Modes

  • Chapter
  • First Online:
Linear Isentropic Oscillations of Stars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 371))

  • 789 Accesses

Abstract

On the ground of the radial component of the vorticity equation, the eigenvalue problem of the linear, isentropic normal modes of a quasi-static star, which is of the third degree in the eigenvalue parameter, is split up into two partial eigenvalue problems: the eigenvalue problem of the normal modes for which the radial component of the curl of the Lagrangian displacement is equal to zero at all points in the equilibrium star, and that of the normal modes for which this condition is not satisfied. Moreover, the Lagrangian displacement field is resolved into a longitudinal and a transverse field, which itself consists of a toroidal and a poloidal field. The scalar functions involved in these three fields are expanded in terms of spherical harmonics of the colatitude and the azimuthal angle. It results that two types of uncoupled modes associated with a single spherical harmonic can be distinguished. The modes of the first type are solutions of the first eigenvalue problem, which is quadratic in the eigenvalue parameter. They are called spheroidal modes and their displacement field consist of a longitudinal and a poloidal field. The modes of the second type are solutions of the second eigenvalue problem, which is of the first degree in the eigenvalue parameter. They are time-independent toroidal modes with a purely horizontal displacement field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.L. Aizenman, P. Smeyers (1977) An analysis of the linear, adiabatic oscillations of a star in terms of potential fields. Astrophys. Space Sci. 48, 123–136

    Article  ADS  MATH  Google Scholar 

  • H.R. Beyer, B.G. Schmidt (1995) Newtonian stellar oscillations. Astron. Astrophys. 296, 722–726

    ADS  Google Scholar 

  • B.A. Bolt, J.S. Derr (1969) Free bodily vibrations of the terrestrial planets. Vistas Astron. 11, 69–102

    Article  ADS  Google Scholar 

  • S. Chandrasekhar (1964) A general variational principle governing the radial and nonradial oscillations of gaseous masses. Astrophys. J. 139, 664–674

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • S. Chandrasekhar, N.R. Lebovitz (1964) Non-radial oscillations of gaseous masses. Astrophys. J. 140, 1517–1528

    Article  ADS  Google Scholar 

  • F.A. Dahlen, J. Tromp (1998) Theoretical Global Seismology. The University Press, Princeton

    Google Scholar 

  • Z. Kopal (1959) Close Binary Systems. The International Astrophysics Series, vol. 5. Chapman & Hall, London

    Google Scholar 

  • H. Lamb (1882) On the vibrations of an elastic sphere. Proc. Lond. Math. Soc. 13, 189–212

    Article  MathSciNet  MATH  Google Scholar 

  • P.M. Morse, H. Feshbach (1953) Methods of Theoretical Physics. McGraw-Hill, New York

    Google Scholar 

  • J. Perdang (1968) On some group-theoretical aspects of the study of non-radial oscillations. Astrophys. Space Sci. 1, 355–371

    Article  ADS  Google Scholar 

  • H. Robe (1965) Sur les oscillations non radiales d’une sphère. Acad. R. Belg. Bull. Cl. Sci. 5e sér. tome 51, 598–603

    Google Scholar 

  • P.H. Roberts (1967) An Introduction to Magnetohydrodynamics. Longmans, London

    Google Scholar 

  • Y. Sobouti (1981) The potentials for the g-, p-, and the toroidal-modes of self-gravitating fluids. Astron. Astrophys. 100, 319–322

    ADS  MATH  Google Scholar 

  • A. Sommerfeld (1964a) Mechanics of Deformable Bodies. Lectures on Theoretical Physics, vol. 2. Academic, New York

    Google Scholar 

  • M. Takata (2005) Momentum conservation and mode classification of the dipolar oscillations of stars. Publ. Astron. Soc. Jpn. 57, 375–389

    ADS  Google Scholar 

  • W. Thomson (1863) Oscillations of a liquid sphere, Sects. 55–58 in Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid. Philos. Trans. R. Soc. Lond. 153, 583–619

    Google Scholar 

  • W. Unno, Y. Osaki, H. Ando, H. Saio, H. Shibahashi (1989) Nonradial Oscillations of Stars. The University Press, Tokyo

    Google Scholar 

  • L. Woltjer (1958) The stability of force-free magnetic fields. Astrophys. J. 128, 384–391

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Smeyers .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smeyers, P. (2010). Spheroidal and Toroidal Normal Modes. In: Linear Isentropic Oscillations of Stars. Astrophysics and Space Science Library, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13030-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13030-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13029-8

  • Online ISBN: 978-3-642-13030-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics