Skip to main content

Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

Mineral determination is a basis of the petrography. Automatic mineral classification based on digital image analysis is getting very popular. To improve classification accuracy we consider similarity features, complex one stage classifiers and two-stage classifiers based on simple pair-wise classification algorithms. Results show that employment of two-stage classifiers with proper parameters orK class single layer perceptron are good choices for mineral classification. Similarity features with properly selected parameters allow obtaining non-linear decision boundaries and lead to sizeable decrease in classification error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Segnini, S., Dejmek, P., Öste, R.: A low cost video technique for colour measurement of potato chips. Lebensmittel-Wissenschaft und-Technologie 32(4), 216–222 (1999)

    Article  Google Scholar 

  2. Yam, K.L., Papadakis, S.E.: A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering 61(1), 137–142 (2004)

    Article  Google Scholar 

  3. Gökay, M.K., Gundogdu, I.B.: Color identification of some Turkish marbles. Construction and Building Materials 22(7), 1342–1349 (2008)

    Article  Google Scholar 

  4. Fueten, F.: A computer-controlled rotating polarizer stage for the petrographic microscope. Computers & Geosciences 23(2), 203–208 (1997)

    Article  Google Scholar 

  5. Marschallinger, R.: Automatic mineral classification in the macroscopic scale. Computers & Geosciences 23, 119–126 (1997)

    Article  Google Scholar 

  6. Thompson, S., Fueten, F., Bockus, D.: Mineral identification using artificial neural networks and the rotating polarizer stage. Computers & Geosciences 27(9), 1081–1089 (2001)

    Article  Google Scholar 

  7. Fueten, F., Mason, J.: An artificial neural net assisted approach to editing edges in patrographic images collected with rotating polarizer stage. Computers & Geosciences 33(9), 1176–1188 (2007)

    Article  Google Scholar 

  8. Bombardier, V., Schmitt, E., Charpentier, P.: A fuzzy sensor for color matching vision system. Measurement 42(2), 189–201 (2009)

    Article  Google Scholar 

  9. Komenda, J.: Automatic recognition of complex microstructures using the Image Classifier. Materials Characterization 46(2-3), 87–92 (2001)

    Article  Google Scholar 

  10. Akesson, U., Stigh, J., Lindqvist, J.E., Göransson, M.: The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Engineering Geology 68(3-4), 275–288 (2003)

    Article  Google Scholar 

  11. Forero, M.G., Sroubek, F., Cristobal, G.: Identification of tuberculosis bacteria based on shape and color. Real-Time Imaging 10(4), 251–262 (2004)

    Article  Google Scholar 

  12. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press, Oxford (1995)

    MATH  Google Scholar 

  13. Raudys, S.: Statistical and Neural Classifiers: An integrated approach to design. Springer, NY (2001)

    Book  MATH  Google Scholar 

  14. Haykin, S.: Neural Networks: A comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  15. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, NY (1990)

    MATH  Google Scholar 

  16. Boser, B., Guyon, I., Vapnik, V.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the Fith Annual Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)

    Google Scholar 

  17. Raudys, S.: Evolution and generalization of a single neurone. I. SLP as seven statistical classifiers, Neural Networks 11, 283–296 (1998)

    Article  Google Scholar 

  18. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Available at, http://www.csie.ntu.edu.tw/~cjlin/libsvm

  19. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classifcation (2009), http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  20. Wu, K.-P., Wang, S.-D.: A weight initialization strategy for weighted support vector machines. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 288–296. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Skurichina, M., Raudys, S., Duin, R.P.W.: K-NN directed noise injection in multilayer perceptron training. IEEE Trans. on Neural Networks 11(2), 504–511 (2000)

    Article  Google Scholar 

  22. Park, S.-H., Fürnkranz, J.: Efficient Pairwise Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 658–665. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Fürnkranz, J.: Round Robin Classification. Journal of Machine Learning Research 2, 721–747 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Krzysko, M., Wolynski, W.: New variants of pairwise classification. European Journal of Operational Research (EOR) 199(2), 512–519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sulzmann, J.-N., Fürnkranz, J., Hüllermeier, E.: On Pairwise Naive Bayes Classifiers. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 371–381. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting otput codes. J. Artif. Int. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  27. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAG’s for multi-class classification. In: Advances in Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press, Cambridge (2000)

    Google Scholar 

  28. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of Statistics 26(1), 451–471 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Friedman, J.H.: Regularized discriminant analysis. Journal of the American Statistical Association 84(405), 165–175 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kybartas, R., Baykan, N.A., Yilmaz, N., Raudys, S. (2010). Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13025-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13025-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13024-3

  • Online ISBN: 978-3-642-13025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics