Skip to main content
  • 1297 Accesses

Abstract

Water is the key to sustainable development. It is necessary for domestic use, for husbandry, industry, and irrigation, and it is necessary for sustaining ecosystem functions. Water availability is, on one hand, dependent on meteorological conditions, and on the other, on terrestrial processes. According to Falkenmark and Rockström (2004), the ratio of blue to green water is determined at the boundary between the pedosphere and the atmosphere. In this concept, blue water is the visible part of the water, which is available at the surface or as soil water or groundwater. In contrast, green water is the non-visible part, which returns as water vapor into the atmosphere. Green water may be productive (transpiration) or unproductive (evaporation). Integrated Water Resource Management (IWRM) mainly concentrates on blue water, although conserving green water is an important aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Falkenmark M, Rockström J (2004) Balancing water for humans and nature – the new approach in ecohydrology. Earthscan Publications, London

    Google Scholar 

  • Loucks DP, van Beek E, Stedinger JR, Dijkman JPM, Villars MT (2005) Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications. Study and reports in Hydrology. Unesco Publishing. http://ecommons.library.cornell.edu/handle/1813/2804 Accessed 02 September 2009

  • Arnold JG, Allen PM (1999) Validation of automated methods for estimating baseflow and groundwater recharge from stream flow records. J Am Water Resour As 35(2):411–424

    Article  Google Scholar 

  • Arnold JG, Allen PM, Bernhardt G (1993) A Comprehensive Surface-Groundwater Flow Model. J Hydrol 142(1–4):47–69

    Article  Google Scholar 

  • Bormann H (2005) Regional hydrological modelling in Benin (West Africa): Uncertainty issues versus scenarios of expected future environmental change. Phys Chem Earth 30(8–10):472–484

    Google Scholar 

  • Brasington J, Richards K (2000) Turbidity and suspended sediment dynamics in small catchments in the Nepal Middle Hills. Hydrol Process 14:2559–2574

    Article  Google Scholar 

  • Dana GL, Panorska AK, Susfalk RB, McGraw D, McKay WA, Dornoo M (2004) Suspended sediment and turbidity patterns in the Middle Truckee River, California for the period 2002–2003. http://www.truckee.dri.edu/tmdl/SedimentPatternsMiddleTruckeeDRI2004.pdf. Accessed 25 August 2009

  • Dickinson A, Collins R (1998) Predicting Erosion and Sediment Yield at the Catchment Scale. In: de Vries FWTP, Agus F, Kerr J (eds) Soil erosion at multiple scales. Principles and methods for assessing causes and impacts. CABI Publishing, Wallingford

    Google Scholar 

  • Diekkrüger B, Arning M (1995) Simulation of water fluxes using different methods for estimating soil parameters. Ecol Model 81:83–95

    Article  Google Scholar 

  • Eckhardt K, Haverkamp S, Fohrer N, Frede H-G (2002) SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Phys Chem Earth 27:641–644

    Google Scholar 

  • FAO-ISRIC-ISSS (1998) World Reference Base for Soil Resources. World Soil Resources Reports 84. FAO, Rome. http://www.fao.org/docrep/W8594E/W8594E00.htm. Accessed 25 August 2009

  • Faß T (2004) Hydrogeologie im Aguima-Einzugsgebiet in Benin, Westafrika. Doctoral Thesis, University of Bonn, Bonn. http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2004/fass_thorsten. Accessed 24 August 2009

    Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny, H (1978) Simulation of field water use and crop yield. Simulation Monograph. Pudoc, Wageningen

    Google Scholar 

  • Fink AH, Pohle S, Hoffmann R (2008) Spatial and Temporal Rainfall Climatologies of Benin. In: Judex M, Thamm H-P (eds) (2008) IMPETUS Atlas Benin: Research Results 2000–2007. 3rd edn., pp. 21–22. Department of Geography, University of Bonn, Bonn

    Google Scholar 

  • Garbrecht J, Martz LW (1997) TOPAZ: An automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterisation. TOPAZ user manual. U.S. Department of Agriculture, ARS Publication GRL 97 (4), El Reno, OK

    Google Scholar 

  • Giertz S (2004) Analyse der hydrologischen Prozesse in den sub-humiden Tropen Westafrikas unter besonderer Berücksichtigung der Landnutzung am Beispiel des Aguima-Einzugsgebietes in Benin. Doctoral thesis, University of Bonn, Bonn. http://hss.ulb.unibonn.de/diss_online/math_nat_fak/2004/giertz_simone. Accessed 25 August 2009

    Google Scholar 

  • Giertz S (2008) Gauged Sub-Catchments of the Ouémé River. In: Judex M, Thamm H-P (eds) IMPETUS Atlas Benin: Research Results 2000–2007. 3rd edn., pp. 29–30. Department of Geography, University of Bonn, Bonn

    Google Scholar 

  • Giertz S, Diekkrüger B, Steup G (2006a) Physically-based modelling of hydrological processes in a tropical headwater catchment in Benin (West Africa) - process representation and multicriteria validation. Hydrol Earth Syst Sc 10:829–847

    Article  Google Scholar 

  • Giertz S, Diekkrüger B, Jaeger A, Schopp M (2006b) An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Ouémé catchment in Benin. Adv Geosci 9:3–13

    Article  Google Scholar 

  • Giertz S, Diekkrüger B (2006c) Evaluation of three different model concepts to simulate the Rainfall-runoff process in a tropical headwater catchment in West Africa. Geo Öko 27:117–147

    Google Scholar 

  • Giertz S, Junge B, Diekkrüger B (2005) Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys Chem Earth, Parts A/B/C, 30(8–10):485–496

    Article  Google Scholar 

  • Götzinger J (2007) Distributed Conceptual Hydrological Modelling - Simulation of Climate, Land Use Change Impact and Uncertainty Analysis. Mitteilungen Institut für Wasserbau, Universität Stuttgart 164. http://elib.uni-stuttgart.de/opus/volltexte/2007/3349/pdf/Diss_Goetzinger_ub.pdf. Accessed 25 August 2009

    Google Scholar 

  • Hiepe C (2008) Soil degradation by water erosion in a sub-humid West-African catchment a modelling approach considering land use and climate change in Benin. Doctoral thesis, University of Bonn, Bonn. http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2008/hiepe_claudia. Accessed 25 August 2009

    Google Scholar 

  • Inamdar S (2004) Assessment of modelling tools and data needs for developing the sediment portion of the TMDL plan for a mixed landuse watershed. Great Lakes Centre, Buffalo http://www.glc.org/basin/pubs/projects/ny_AsModTl_%20pub1.pdf. Accessed 25 August 2009

    Google Scholar 

  • Judex M (2008) Modellierung der Landnutzungsdynamik in Zentralbenin mit dem XULU Framework. Doctoral thesis, University of Bonn, Bonn. http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2008/judex_michael. Accessed 25 August 2009

    Google Scholar 

  • Junge B (2004) Die Böden des oberen Ouémé-Einzugsgebietes in Benin/Westafrika - Pedologie, Klassifizierung, Nutzung und Degradierung. Doctoral thesis, University of Bonn, Bonn. http://hss.ulb.uni-bonn.de/diss_online/landw_fak/2004/Junge_birte. Accessed 25 August 2009

    Google Scholar 

  • Kamagate B, Favreau G, Séguis L, Seidel JL, Descloitres M, Affaton P (2007) Hydrological processes and water balance of a tropical crystalline bedrock catchment in Benin (Donga, upper Ouémé River). Compte Rendus Académie des Sciences, Volume 339 - Numéro 6:418

    Google Scholar 

  • Orstom (1976): Carte Pédologique de Reconnaissance à 1: 200,000. Sheets Djougou, Parakou, Save, Abomey

    Google Scholar 

  • Penman H L (1956) Evaporation: An introduction survey. Neth J Agr Sci 4:8–29

    Google Scholar 

  • Pfannkuche J, Schmidt A (2003) Determination of suspended particulate matter concentration from turbidity measurements: particle size effects and calibration procedures. Hydrol Process 17:1951–1963

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:82–92

    Article  Google Scholar 

  • Ritchie JT (1972) A model for predicting evaporation from a row crop with incompletet cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  • SCS (1972) Estimation of direct runoff from storm rainfall. National engineering handbook, section 4 – hydrology, USDA: 10.1–10.24

    Google Scholar 

  • Sintondji L (2005) Modelling the rainfall-runoff process in the Upper Quémé catchment area (Terou) in a context of climate change: extrapolation from the local to the regional scale. Doctoral thesis, University of Bonn, Bonn

    Google Scholar 

  • Smith RE, Parlange J-Y (1978) A parameter-efficient hydrologic infiltration model. Water Resour Res 14:533–538

    Article  Google Scholar 

  • Sonneveld, BGJS (1997) Dominant Soils of Nigeria. Stichting Onderzoek Wereldvoedselvoorziening van de Vrije Universiteit (SOWVU), Amsterdam.

    Google Scholar 

  • Turc L (1963) Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formulation simplifié et mise à jour. Ann Agron 12:13–49

    Google Scholar 

  • Varado N, Braud I, Galle S, Le Lay M, Séguis M, Kamagate M, Depraetere M (2006) Multicriteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin) using a downward approach of model complexity. Hydrol Earth Syst Sc 10:427–442

    Article  Google Scholar 

  • Van Noordwijk M, van Roode N, McCallie EL, Lusiana B (1998) Erosion and Sedimentation as Multiscale, Fractal Processes: Implications for Models, Experiments and the Real World. In: de Vries FWTP, Agus F, Kerr J (eds) Soil erosion at multiple scales. Principles and methods for assessing causes and impacts, pp. 223–254. CABI Publishing, Wallingford

    Google Scholar 

  • Walling DE, Collins AL, Sichingabula HM, Leeks GJL (2001) Integrated assessment of catchment suspended sediment budgets: A Zambian example. Land Degrad Dev 12:387–415

    Article  Google Scholar 

  • Abbaspour KC, Johnson CA, van Genuchten MT (2004) Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J 3(4):1340–1352

    Google Scholar 

  • Antoni V, Thorette J, Zaidi N, le Bissonais YL, Laroche B, Barthès S, Daroussin J, Arrouays D (2006) Modélisation de l’aléa érosion pour une région méditerra-néenne francaise à deux échelles différentes: aux échelles du 1/1.000.000 et du 1/250.000. Water Management and Soil Conservation in Semi-Arid Environments - the 14th Conference of International Soil Conservation Organization, Marrakech, Morocco. http://www.tucson.ars.ag.gov/isco/index_files/Page416.htm. Accessed 21 October 2009

  • Aoubouazza M, El Meknassi YE (1996) Hydrologie et Hydrogéologie du bassin de la Feija de Zagora (Province Ouarzazate). Étude sur la lutte contre la désertification dans la vallée moyen de l’Oued Drâa. Direction du Développement et de la Gestion de l’Irrigation. Rabat

    Google Scholar 

  • Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational Estimates of Reference Evapotranspiration. Agron J 81(4):650

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes S, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Papers 56. FAO, Rome

    Google Scholar 

  • Arnold JG, Allen PM, Bernhardt G (1993) A Comprehensive Surface-Groundwater Flow Model. J Hydrol 142(1–4):47–69

    Article  Google Scholar 

  • Bouidida A (1990) Salinité des eaux de la vallee du Drâa - situation actuelle et evolution. Diploma thesis, University Hassan II, Rabat

    Google Scholar 

  • Boonstra J, de Ridder NA (1981) Numerical Modelling of Groundwater Basins. ILRI publ. 29. International Institute for Land Reclamation and Improvement, Wageningen

    Google Scholar 

  • Bos MG, Nugteren J (1990) On irrigation efficiencies. ILRI publ. 19. International Institute for Land Reclamation and Improvement, Wageningen

    Google Scholar 

  • Brancic B (1968) Sols de la palmeraie de Fezzouata. Amenagement de la Vallée du Drâa. Ministère du l’Agriculture et de la Reforme Agraire. ORMVAO, Ouarzazate

    Google Scholar 

  • Cao WZ, Bowden WB, Davie T, Fenemor A (2006) Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol Process 20(5):1057–1073

    Article  Google Scholar 

  • Cappy S (2006) Hydrogeological Characterization of the Upper Drâa Catchment (Morocco). Doctoral thesis, University of Bonn, Bonn http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2007/cappy_sebastien/. Accessed 21 October 2009

    Google Scholar 

  • Chamayou J (1966) Hydrogéologie de la Vallée du Dra Moyen. Doctoral thesis

    Google Scholar 

  • Chamayou J, Combe M, Dupuy J-C (1977) Moyenne Vallee du Dra. In: Devision de la Geologie (ed) Ressources en eau du Maroc, Tome 3, Domaines atlasique et sud-atlasique, Notes et Mémoires du Service Géologique 231. Rabat

    Google Scholar 

  • Chaponnière A, Boulet G, Chebouni A, Aresmouk M (2008) Understanding hydrological processes with scarce data in a mountain environment. Hydrol Proc-ess 22:1908–1921

    Article  Google Scholar 

  • Compagnie Africain de Géophysique (ed) (1947) Prospection electrique au Foum Takkat. Siège Social, Casablanca

    Google Scholar 

  • Coppus R, Imeson AC (2001) Extreme events controlling erosion and sediment transport in a semi-arid sub-Andean valley. Earth Surf Proc Land 27(13):1365–1375

    Google Scholar 

  • de Roo ADJ (1993) Modelling surface runoff and soil erosion in catchments using geographical information systems, Validity and applicability of the “ANSWERS” model in two catchments in the loess area of South Limburg (the Netherlands) and one in Deven (UK). Netherlands Geographical Studies 157

    Google Scholar 

  • Destombes J (1985) Ordivician. In: Holland CH (ed) Lower Palaeozoic of north-western and west central Africa. 1. Edition. Wiley, Chichester

    Google Scholar 

  • Doukkali MR (2005) Water institutional reforms in Morocco. Water Policy 7:71–88

    Google Scholar 

  • DRE (Devision des Ressources en Eau) (ed) (1976) Étude des ressources en eau souterraine de l’Anti-Atlas Central (Région d’Ouarzazate). Programme spécial de recherche d’eau dans les zones déshéritées. Direction de l’Hydraulique, Ministère des Travaux Publics et des Communications. Royaume du Maroc. Rabat

    Google Scholar 

  • DRH (Direction de la Région Hydraulique d’Agadir de Souss Massa et Drâa) (ed) (2001) Étude d’approvisionnement en eau potable des populations rurales de la province de Zagora, Mission 1 : Analyse de la situation actuelle du service de l’eau et collecte des données de base, Volume 2 - Etude des ressources en eau. Direction de la Recherche et de la Planification, Direction Générale de l’Hydraulique, Ministère de l’Equipement, Royaume du Maroc. Rabat

    Google Scholar 

  • Dunkerley DL (2008) Bank permeability in an Australian ephemeral dryland stream: variation with stage resulting from mud deposition and sediment clogging. Earth Surf Proc Land 33(2):226–243

    Article  Google Scholar 

  • EI-Hames AS, Richards KS (1994) Progress in arid-lands rainfall-runoff modelling. Progress in Physical Geography 18(3):343–365. doi:10.1177/030913339401800304

    Article  Google Scholar 

  • Flerchinger GN, Cooley KR (2000) A ten-year water balance of a mountainous semi-arid watershed. J Hydrol 237:86–99

    Article  Google Scholar 

  • Fontaine TA, Cruickshank TS, Arnold JG, Hotchkiss RH (2002) Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J Hydrol 262(1–4):209–223. doi:10.1016/S0022-1694(02)00029-X

    Article  Google Scholar 

  • Gobin A, Govers G (2002) Pan European Soil Erosion Risk Assessment - Second annual report 2001–2002. The European Commission 5th framework programme. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_cd/pdf/Pesera2AnnRep.pdf. Accessed 21 October 2009

    Google Scholar 

  • Griffiths GA, Clausen B (1997) Streamflow recession in basins with multiple water storages. J Hydrol 190(1–2):60–74

    Article  Google Scholar 

  • Haut Commissariat aux Eaux et Forets et la Lutte contre la Desertification (ed) (2007) Elaboration du dossier de base pour l’etude d’amenagement en amont du barrage d’El Mansour Eddahbi

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-file Report. U. S. Geological Survey 92

    Google Scholar 

  • Harmel RD, Cooper RJ, Slade RM, Haney RL, Arnold JG (2006) Cumulative uncertainty in measured streamflow and water quality data for small watersheds. Trans ASAE 49(3):689–701

    Google Scholar 

  • Heidecke C, Kuhn A, Klose S (2008) Water pricing options for the Middle Drâa River Basin in Morocco. AfJARE 2(2):170–187

    Google Scholar 

  • Helg U, Burkhard M, Cartig S, Robert-Chaurre C (2004) Folding and inversion tectonics in the Anti-Atlas of Morocco. Tectonics 23:1–17

    Article  Google Scholar 

  • Hernandez M, Miller SN, Goodrich DC, Goff BF, Kepner WG, Edmonds CM, Jones KB (2000) Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-Arid Watersheds. Environ Monit Assess 64:285–298

    Article  Google Scholar 

  • Hession WC, Shanholtz VO (1988) A geographic information system for targeting nonpoint-source agricultural pollution. J Soil Water Conserv 43(3):264–266

    Google Scholar 

  • Ismat Z (2008) Folding and kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco. J Struct Geol 30:1396–1404

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. A system of quantitative pedology. Dover Publications Inc., New York

    Google Scholar 

  • Ji X-B, Kang E-S, Chen R-S, Zhao W-Z, Zhang Z-H, Jin B-W (2007) A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied. Agr Water Manage 87(3):337–346

    Article  Google Scholar 

  • Khazaei E, Spink AEF, Warner JW (2003) A catchment water balance model for estimating groundwater recharge in arid and semi-arid regions of south-east Iran. Hydrogeol J 11(3):333–342

    Google Scholar 

  • Kleindienst H, Pfister M, Baumgartner MF (1999) Pre-operational snowmelt fore-casting based on an integration of ground measurements, meteorological forecasts and satellite data. In: Tranter M (ed) Interactions Between the Cryosphere, Climate and Greenhouse Gases. IAHS Publication 256:81–89

    Google Scholar 

  • Kirkby M, Gobin A, Irvine B (2003) PESERA model strategy, land use and vegetation growth. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_cd/pdf/DL5ModelStrategy.pdf. Accessed 21 October 2009

  • Kirkby M, Irvine B, Jones RJA, Govers G, the PESERA Team(2008) The PESERA coarse scale erosion model for Europe. I. - Model rationale and im-plementation. Eur J Soil Sci 59(6):1293–1306

    Article  Google Scholar 

  • Klose A (2008) Soil Properties in the Drâa Catchment. In: Schulz O, Judex M (eds) (2008) IMPETUS-Atlas Morocco: Research Results 2000–2007. 3rd edn., pp.33–36. Department of Geography, University of Bonn, Bonn

    Google Scholar 

  • Klose A (2009) Soil characteristics and soil erosion by water in a semi-arid catchment (Wadi Drâa, South Morocco) under the pressure of global change. Doctoral thesis, University of Bonn, Bonn. http://hss.ulb.uni-bonn.de/2009/1959/1959.htm Accessed 25 November 2009

    Google Scholar 

  • Klose S, Reichert B, Lahmouri A (2008) Management options for a sustainable groundwater use in the Middle Drâa Oases under the pressure of climatic changes. In: Zereini F, Hoetzl H (eds) Climatic Changes and Water Resources in the Middle East and North Africa. Springer, Berlin

    Google Scholar 

  • Lahlou A (1988) The silting of Moroccan Dams. In: Bordas MP, Walling DE (eds) Sediment Budgets. IAHS Publication 174:71–77

    Google Scholar 

  • Lane LJ (1983) Chapter 19: Transmission Losses. In: Soil Conservation Service (ed) National Engineering Handbook, Section 4: Hydrology, pp. 19–21. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Le Bissonnais YL (2005) Pan-European soil crusting and erodibility assessment from the European Soil Geographical Database using pedotransfer rules. Adv Environ Monit Modell 2(1):1–15

    Google Scholar 

  • Le Houérou HN (1996) Climate change, drought and desertification. J Arid Envi-ron 34(2):133–185

    Article  Google Scholar 

  • Margat J (1958) Le probleme de l’eau et les etudes hydrgéologique a entreprendre dans la Vallee du Drâa

    Google Scholar 

  • Martin S (2006) Influence du tourisme sur la gestion de l’eau en zone arid – Exemple de la vallée Du Drâa (Maroc). Doctoral thesis, University of Lausanne, Lausanne

    Google Scholar 

  • Martinec J (1975) Snowmelt-Runoff model for stream flow forecasts. Nord Hy-drol 6(3):145–154

    Google Scholar 

  • Martinec J, Rango A, Roberts R (1998) Snowmelt Runoff Model User’s Manual. Geogr. Bernensia, Series P, Vol. 35, Bern

    Google Scholar 

  • Martinez Beltran J (1978) Drainage and reclamation of salt affected soils in the Bardenas area, Spain. International Institute for Land Reclamation and Improvement, Wageningen

    Google Scholar 

  • Matthews DA (1989) Programme Al Ghait – Morocco winter snowpack augmentation project. Final report. Department of the Interior, Washington DC

    Google Scholar 

  • Menking KM, Syed KH, Anderson RY, Shafike NG, Arnold JG (2003) Model estimates of runoff in the closed, semiarid Estancia basin, central New Mexico, USA. Hydrolog Sci J 48(6):953–970

    Article  Google Scholar 

  • Ministère des travaux publics (ed) (1998) Etude du plan directeur de l’aménagement des eaux des bassins sud-atlasiques, Mission 3: Etude des schemas d’aménagement. Rabat

    Google Scholar 

  • Ministry of Economy (ed) (1959) Geological Map of Morocco 1:500000, Sheet Ouarzazate. Rabat

    Google Scholar 

  • Neitsch SL, Arnold JG, Williams JR (1999) Soil and Water Assessment Tool - User Manual. USDA-ARS, Temple, TX

    Google Scholar 

  • NRCS (ed) (1986) Urban Hydrology for Small Watersheds. USDA, Engineering Division, Technical Release 55 (TR-55). U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Office Nationale des Irrigations (ed) (1973) Vallée du Drâa – Palmeraie du Fezouata, Forages de reconnaissance et d’études. Résultats de Travaux. Rabat

    Google Scholar 

  • ORMVAO (Office Régionale de Mise en Valeur Agricole de Ouarzazate) (ed) (1995) Étude d’amélioration de l’exploitation des systèmes d’irrigation et de drainage de l’ORMVAO-Phase 1 – Diagnostic de la situation actuelle, Vol. 1. Ouarzazate

    Google Scholar 

  • Ouhajou L (1996) Espace hydraulique et société au Maroc – Cas des systèmes d’irrigation dans la vallée du Drâa. Faculté des Lettres et des Sciences Humaines. Thèse et Mémoire. Agadir

    Google Scholar 

  • Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23(1–2):1–28

    Article  Google Scholar 

  • Pitlick J (1994) Relation between peak flow, precipitation and physiography for five mountainous regions in the western USA. J Hydrol 158(3–4):219–240

    Article  Google Scholar 

  • Radanovic R (1968a) Sols de la palmeraie de Mezguita. Amenagement de la Vallée du Drâa. Ministère du l’Agriculture et de la Reforme Agraire. ORMVAO, Ouarzazate

    Google Scholar 

  • Radanovic R (1968b) Sols de la palmeraie de Ternata. Amenagement de la Vallée du Drâa. Ministère du l’Agriculture et de la Reforme Agraire. ORMVAO, Ouarzazate

    Google Scholar 

  • Radanovic R (1968c) Sols de la palmeraie de Tinzouline. Amenagement de la Vallée du Drâa. Ministère du l’Agriculture et de la Reforme Agraire. ORMVAO, Ouarzazate

    Google Scholar 

  • Richardson CW, Wright DA (1984) WGEN: A Model for Generating Daily Weather Variables. ARS-8

    Google Scholar 

  • Riser J (1988) Le Jbel Sarhro et sa retombée saharienne (Sud-Est Marocain) – Étude Géomorphologique. Notes et Memoires du Service Géologique No. 317. Direction de la Géologie. Rabat

    Google Scholar 

  • Salomonson VV, Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens Environ 89(3):351–360

    Article  Google Scholar 

  • Salvetti A, Ruf W, Burlando P, Juon U, Lehmann C (2002) Hydrotope-based river flow simulation in a Swiss Alpine Catchment accounting for Topographic, Micro-climatic and Land-use Controls. Integrated Assessment and Decision Support, Proceedings of the First Biennial Meeting of the International Environmental Modelling and Software Society, Volume 1, p. 334–339. June 2002

    Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10:110–120

    Article  Google Scholar 

  • Schulz O (2006) Analyse schneehydrologischer Prozesse und Schneekartierung im Einzugsgebiet des Oued M’Goun, Zentraler Hoher Atlas (Marokko). Doctoral thesis, University of Bonn, Bonn. http://hss.uni-bonn.de/diss-online/math-nat-fak/2007/schulz_oliver/index.htm. Accessed 21 October 2009

    Google Scholar 

  • Schulz O, Busche H, Benbouziane A (2008) Decadal Precipitation Variances and Reservoir Inflow in the Semi-Arid Upper Drâa basin (South-Eastern Morocco). In: Zereini F, Hoetzl H (eds) Climatic Changes and Water Resources in the Middle East and in North Africa. Springer, Wien

    Google Scholar 

  • Schulz O, de Jong C (2004) Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco. Hydrol Earth Syst Sc 8(6):1076–1089

    Article  Google Scholar 

  • Schwarze R (1999) Skalenwechsel über Parameter: Grundwasser. In: Kleeberg H, Mauser W, Peschke G, Streit U (eds) Hydrologie und Regionalisierung. DFG Research Report. Wiley, Weinheim

    Google Scholar 

  • Sloan PG, Moore ID (1984) Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resour Res 20(12):1815–1822

    Article  Google Scholar 

  • Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165(1–4):349–370. doi:10.1016/0022-1694(94)02540-R

    Article  Google Scholar 

  • Tarboton DG, Luce CH (1996) Utah Energy Balance Snow Accumulation and Melt Model (UEB), Computer model technical description and user’s guide. Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station. http://www.engineering.usu.edu/cee/faculty/dtarb/snow/snowrep.pdf. Accessed 21 October 2009

  • UNESCO-UNDP (ed) (1970) Research and training on irrigation with saline water. Technical Report of UNDP Project: Tunisia. Unesco, Paris

    Google Scholar 

  • Van Hoorn J W (1981) Salt movement, leaching efficiency, and leaching requirement. Agr Water Manage 4(4):409–428

    Article  Google Scholar 

  • Viviroli D, Weingartner R, Messerli B (2003) Assessing the hydrological significance of the world’s mountains. Mt Res Dev 23(1):32–40

    Article  Google Scholar 

  • World Bank (ed) (1994): Kingdom of Morocco. A water sector review. Unpublished

    Google Scholar 

  • Youbi L (1990) Hydrologie du Bassin du Dadès. Ministere de l’Agriculture et de la Reforme Agraire, Office Regional de Mise en Valeur Agricole de Ouarzazate. Ouarzazate

    Google Scholar 

  • van Wesemael B, Mulligan M, Poesen J (2000) Spatial patterns of soil water balance on intensively cultivated hillslopes in a semi-arid environment: the impact of rock fragments and soil thickness. Hydrol Process 14 :1811–1828

    Article  Google Scholar 

  • Weber B (2004) Untersuchungen zum Bodenwasserhaushalt und Modellierung der Bodenwasserflüsse entlang eines Höhen- und Ariditätsgradienten (SE Marokko). Doctoral thesis, University of Bonn, Bonn. http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2004/weber_benedikt/index.htm. Accessed 21 October 2009

    Google Scholar 

  • Williams JR (1969) Flood routing with variable travel time or variable storage co-efficients. Trans ASAE 12(1):100–103

    Google Scholar 

  • Zivcovic B (1968) Sols de la palmeraie de M’Hamid. Amenagement de la Vallée du Drâa. Ministère du l’Agriculture et de la Reforme Agraire. ORMVAO, Ouarzazate

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Diekkrüger, B. (2010). Continental hydrosphere. In: Speth, P., Christoph, M., Diekkrüger, B. (eds) Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12957-5_6

Download citation

Publish with us

Policies and ethics