Skip to main content

The Desulfurization Pathway in Rhodococcus

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

The emission of sulfur oxides can have harmful effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some bacteria, like Rhodococcus, have been used or studied to upgrade the fossil fuels on sulfur content limitation. Recent advances have demonstrated the desulfurization pathway and the molecular mechanism for biodesulfurization. In addition, genetic technology was also used to improve sulfur-removal efficiencies. In this chapter, we summarize the mechanism of biodesulfurization in Rhodococcus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albano C, Randers-Eichhorn L, Bentley W, Rao G (1998) Green fluorescent protein as a real time quantitative reporter of heterologous protein production. Biotechnol Prog 14:351–354

    Article  PubMed  CAS  Google Scholar 

  • Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1994) Petroleum microbiology. Macmillan, New York, NY

    Google Scholar 

  • Atlas RM, Boron DJ, Deever WR, Johnson AR, McFarland BL, Meyer JA (2001) Method for removing organic sulfur from heterocyclic sulfur containing organic compounds. US patent H1, 986

    Google Scholar 

  • Borgne S, Quintero R (2003) Review: biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169

    Article  Google Scholar 

  • Cha H, Wu C, Valdes J, Rao G, Bentley W (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein protein expression and solubility. Biotechnol Bioeng 67:565–574

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zhang WJ, Chen JM, Cai YB, Li W (2008) Desulfurization of various organic sulfur compounds and the mixture of DBT+4, 6-DMDBT by Mycobacterium sp. ZD-19. Bioresour Technol 99:3630–3634

    Article  PubMed  CAS  Google Scholar 

  • Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359

    Article  PubMed  CAS  Google Scholar 

  • Darzins A, Xi L, Childs JD, Monticello DJ, Squires CH (1999) DSZ gene expression in pseudomonas hosts. US Patent 5952208

    Google Scholar 

  • Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, al-Hawari J, Grossman MJ, Sankey BM, Lau PC (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several Rhodococci. Appl Environ Microbiol 63:2915–2919

    PubMed  CAS  Google Scholar 

  • Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707–6716

    PubMed  CAS  Google Scholar 

  • Dosomer JP, Dhaese P, Montagu MV (1988) Conjugative transfer of cadmium resistance plasmids in Rhodococcus fascians strains. J Bacteriol 170:2401–2405

    Google Scholar 

  • Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M, Yu B, Xu P (2006) The surfactant tween 80 enhances biodesulfurization. Appl Environ Microbiol 72:7390–7393

    Article  PubMed  CAS  Google Scholar 

  • Galán B, Díaz E, García JL (2000) Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalyst. Environ Microbiol 2:687–694

    Article  PubMed  Google Scholar 

  • Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulphurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36

    Article  PubMed  CAS  Google Scholar 

  • Gallardo ME, Ferrandez A, De LV, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160

    PubMed  CAS  Google Scholar 

  • Gaudu P, Touati D, Niviere V, Fontecave M (1994) The NAD(P)H: flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J Biol Chem 269:8182–8185

    PubMed  CAS  Google Scholar 

  • Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553

    Article  PubMed  CAS  Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Article  PubMed  CAS  Google Scholar 

  • Gray KA, Mrachkoyz GT, Squiresy CH (2003) Biodesulfurization of fossil fuels. Curr Opin Microbiol 6:229–235

    Article  PubMed  CAS  Google Scholar 

  • Grossman MJ, Lee MK, Prince RC, Garrett KK, George GN, Pickering IJ (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65:181–188

    PubMed  CAS  Google Scholar 

  • Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246

    Article  PubMed  CAS  Google Scholar 

  • Inoue A, Horikoshi K (1991) Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J Ferment Bioeng 71:194–196

    Article  CAS  Google Scholar 

  • Izumi Y, Ohshiro T, Ogino H, Hine Y, Shinao M (1994) Selective desulphurisation of dibenzothiophene by R. erythropolis D-1. Appl Environ Microbiol 60:223–226

    PubMed  CAS  Google Scholar 

  • Ji YE, Colston MJ, Cox RA (1994) The ribosomal RNA (rrn) operons of fast-growing mycobacteria: primary and secondary structures and their relation to rrn operons of pathogenic slowgrowers. Microbiology 140:2829–2840

    Article  PubMed  CAS  Google Scholar 

  • Kawatra SK, Eisele TC (2001) Coal desulfurization, high-efficiency preparation methods. Taylor & Francis, New York

    Google Scholar 

  • Kayser KJ (2002) Molecular biological characterization and enhancement of the biodesulfurization (DSZ) pathway. PhD thesis, Illinois Institute of Technology 106 pages

    Google Scholar 

  • Kertesz L (2001) Building a scientific foundation for prevention. Healthplan 42:44–47

    PubMed  CAS  Google Scholar 

  • Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    Article  PubMed  CAS  Google Scholar 

  • Kilbane JJ, Bielaga BA (1990) Toward sulfur-free fuels. Chemtech 20:747–751

    CAS  Google Scholar 

  • Kilbane JJ, Jackowski K (1992) Biodesulphurisation of watersoluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Kirimura K, Furuya T, Sato R, Ishii Y, Kino K, Usami S (2002) Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl Environ Microbiol 68:3867–3872

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Onaka T, Ishii Y, Konishi J, Takaki M, Okada H, Ohta Y, Koizumi K, Suzuki M (2000) Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by single bacterial strain. FEMS Microbiol Lett 187:123–126

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Sasaki H, Kobori T, Zenno S, Saigo K, Murphy MEP, Adman ET, Tanokura M (1998) 1.8 Å crystal structure of the major NAD-(P)H:FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure, cofactor and substrate- analog binding, and comparison with related flavoproteins. J Mol Biol 280:259–273

    Article  PubMed  CAS  Google Scholar 

  • Konishi J, Onaka T, Ishii Y, Suzuki M (2000) Demonstration of the carbon–sulfur bond-targeted desulfurization of benzothiophene by thermophile Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154

    Article  PubMed  CAS  Google Scholar 

  • Kropp KG, Fedorak PM (1998) A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44:605–622

    Article  PubMed  CAS  Google Scholar 

  • Kropp P, Gerber WD (1998) Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci Lett 257:73–76

    Article  PubMed  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  • Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2004) Crystallization and preliminary X-ray analyses of desulfurization enzyme DszB and its C27S mutant complexed with biphenyl-2-sulfinic acid. Acta Crystallogr D 60:1636–1638

    Article  PubMed  Google Scholar 

  • Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2006) Crystal structure and desulfurization mechanism of 2′-hydroxybiphenyl-2- sulfinic acid desulfinase. J Biol Chem 281:32534–32539

    Article  PubMed  CAS  Google Scholar 

  • Lei X, Squires CH, Monticello DJ, Child D (1997) A Flavin Reductase Stimulates DszA and DszC Proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75

    Article  Google Scholar 

  • Li ZM, Squires CH, Monticello DJ, Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory region of Rhodococcus erythropolis IGTS8. J Bacteriol 178:6409–6418

    PubMed  CAS  Google Scholar 

  • Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulfurization of hydrodesulfurizationtreated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223:301–307

    Article  PubMed  CAS  Google Scholar 

  • Li FL, Xu P, Feng JH, Meng L, Zheng Y, Luo LL, Ma CQ (2005a) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71:276–281

    Article  PubMed  CAS  Google Scholar 

  • Li W, Zhang Y, Wang MD, Shi Y (2005b) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50

    Article  PubMed  CAS  Google Scholar 

  • Li GQ, Ma T, Li JH, Li H, Liu RL (2006a) Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli. Acta Microbiol Sin 46:275–279

    CAS  Google Scholar 

  • Li W, Wang MD, Chen H, Chen JM, Shi Y (2006b) Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett 28:1175–1179

    Article  PubMed  CAS  Google Scholar 

  • Li FL, Zhang ZZ, Feng JH, Cai XF, Xu P (2007a) Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127:222–228

    Article  PubMed  CAS  Google Scholar 

  • Li GQ, Ma T, Li SS, Li H, Liang FL, Liu RL (2007b) Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Biosci Biotechnol Biochem 71:849–854

    Article  PubMed  CAS  Google Scholar 

  • Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74:971–976

    Google Scholar 

  • Luo MF, Xing JM, Gou ZX, Li S, Liu HZ, Chen JY (2003) Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem Eng J 13:1–6

    Google Scholar 

  • Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5 and Tn10-derived minitransposons. Methods Enzymol 235:386–405

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Sakanishi K, Mochida I (1994) Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind Eng Chem Res 33:218–222

    Article  CAS  Google Scholar 

  • Ma CQ, Feng JH, Zeng YY, Cai XF, Sun BP, Zhang ZB, Blankespoor HD, Xu P (2006a) Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 65:165–169

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Li GQ, Li J, Liang FL, Liu RL (2006b) Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol Lett 28:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization, and overexpression of flavin reduced involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Hirasawa K, Koizumi KI, Maruhashi K, Kurane R (2001) Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotechnol Lett 23:1715–1718

    Article  CAS  Google Scholar 

  • Matsui T, Noda K, Tanaka Y, Maruhashi K, Kurane R (2002) Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Curr Microbiol 45:240–244

    Article  PubMed  CAS  Google Scholar 

  • McFarland BL, BoronDJ DeeverW, Meyer JA, JohnsonAR ARM (1998) Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit Rev Microbiol 24:99–147

    Article  PubMed  CAS  Google Scholar 

  • Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. Chemtech 28:38–45

    CAS  Google Scholar 

  • Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Appl Environ Microbiol 49:756–760

    PubMed  CAS  Google Scholar 

  • Nakayama N, Matsubara T, Ohshiro T, Moroto Y, Kawata Y, Koizumi K, Hirakawa Y, Suzuki M, Maruhashi K, Izumi Y, Kurane R (2002) A novel enzyme, 2′-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene- desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization. Biochim Biophys Acta 1598:122–130

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Kimiko W, Kenji M (2002) Cloning of a rhodococcal promoter using a transposon for dibenthiophene biodesulfurization. Biotechnol Lett 24:1875–1882

    Article  CAS  Google Scholar 

  • Noda K, Watanabe K, Maruhashi K (2003) Isolation of the Pseudomonas aeruginosa gene affecting uptake of dibenzothiophene in n-tetradecane. J Biosci Bioeng 95:504–511

    PubMed  CAS  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    PubMed  CAS  Google Scholar 

  • Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ohshiro T, Izumi Y (2000) Purification, characterization and crystallization of enzymes for dibenzothiophene desulfurization. Bioseparation 9:185–188

    Article  PubMed  CAS  Google Scholar 

  • Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344

    Article  CAS  Google Scholar 

  • Ohshiro T, Hirata T, Izumi Y (1995) Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl Microbiol Biotechnol 44:249–252

    Article  CAS  Google Scholar 

  • Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and Characterization of Dibenzothiophene (DBT) Sulfone Monooxygenase, an Enzyme Involved in DBT Desulfurization, from Rhodococcus erythropolis D-l. J Biosci Bioeng 88:610–616

    Article  PubMed  CAS  Google Scholar 

  • Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-Hydroxybiphenyl-2-sulfinate Desulfinase, an Enzyme Involved in the Dibenzothiophene Desulfurization Pathway, from Rhodococcus erythropolis KA2-5-1 by Site-Directed Mutagenesis. Biosci Biotechnol Biochem 71:2815–2821

    Article  PubMed  CAS  Google Scholar 

  • Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulfurization by Rhodococcus sp. IGTS8 (ATCC 53968). Microbiology 143:2961–2973

    Article  PubMed  CAS  Google Scholar 

  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulfurization of benzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek 74:119–132

    Article  PubMed  CAS  Google Scholar 

  • Omori T, Monna L, Saiki Y, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. Strain SY1. Appl Environ Microbiol 58:911–915

    PubMed  CAS  Google Scholar 

  • Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475

    PubMed  CAS  Google Scholar 

  • Purdy RF, Lepo JE, Ward B (1993) Biodesulfurization of organicsulfur compounds. Curr Microbiol 27:219–222

    Article  CAS  Google Scholar 

  • Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (1999) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72–79

    Article  Google Scholar 

  • Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88:94–99

    Article  PubMed  CAS  Google Scholar 

  • Rhee SK, Chang JH, Chan YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331

    PubMed  CAS  Google Scholar 

  • Shan GB, Xing JM, Luo MF, Liu HZ, Chen JY (2003) Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol Lett 25:1977–1981

    Article  PubMed  CAS  Google Scholar 

  • Shennan JL (1996) Microbial attack on sulfur-containing hydrocarbons, implications for the biodesulphurization of oils and coals. J Chem Technol Biotechnol 67:109–123

    Article  CAS  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328

    Google Scholar 

  • Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization inbiophasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609

    Article  PubMed  CAS  Google Scholar 

  • Watkins LM, Rodriguez R, Schneider D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT (2003) Purification and characterization of the aromatic desulfinase, 2-(2′-hydroxyphenyl) benzenesulfinate desulfinase. Arch Biochem Biophys 415:14–23

    Article  PubMed  CAS  Google Scholar 

  • Xi L, Squires CH, Monticello DJ, Childs JD (1997) A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O (2000) Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci Bioeng 89:361–366

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu P, Shi Q, Ma CQ (2006a) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Ma CQ, Zhou WJ, Wang Y, Cai XF, Tao F, Zhang Q, Tong MY, Qu JY, Xu P (2006b) Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258:284–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support for our research from the Natural Science Foundation of Tianjin, China (grant numbers 05YFJMJC00700, 09JCZDJC18000). We also thank the publisher of the American Society of Microbiology and the American Society for Biochemistry and Molecular Biology to offer kindly help with useful pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ma, T. (2010). The Desulfurization Pathway in Rhodococcus . In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12937-7_8

Download citation

Publish with us

Policies and ethics