Skip to main content

Catabolism of Nitriles in Rhodococcus

  • Chapter
  • First Online:
Biology of Rhodococcus

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

The enzymes of nitrile catabolism in Rhodococcus include nitrilases and nitrile hydratases/amidase systems. According to their cofactor, nitrile hydratases are classified into Fe-type and Co-type subfamilies, which are typically produced by Rhodococcus erythropolis and Rhodococcus rhodochrous, respectively. The latter species is also the typical source of nitrilases, most of which strongly prefer aromatic substrates. The organization of the nitrilase, nitrile hydratase, amidase and relevant regulatory genes, and mechanisms of their expression control are shown. The unique structural and physico-chemical properties of these enzymes (subunit aggregation; Fe-type nitrile hydratase photoreactivity) are described. The overview of nitrile-converting enzyme applications emphasizes their use in the biodegradation of aliphatic nitriles and benzonitrile herbicides. The significant potential of these enzymes as biocatalysts for the production of bulk and fine chemicals is also presented. The suitability of different preparation methods for whole cells and enzymes is discussed. Finally, analytical methods for monitoring nitrile biotransformations are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnaud A, Galzy P, Jallageas JC (1976a) Observations on nitrilase activity of some bacteria. CR Acad Sci Paris 283:571–573

    CAS  Google Scholar 

  • Arnaud A, Galzy P, Jallageas JC (1976b) Etude de l’activité nitrilasique de quelques bactéries. Rev Ferment Ind Aliment 31:39–44

    CAS  Google Scholar 

  • Asano Y (2002) Overview of screening for new microbial catalysts and their uses in organic synthesis – Selection and optimization of biocatalysts. J Biotechnol 94:65–72

    Article  PubMed  CAS  Google Scholar 

  • Azza S, Bigey F, Arnaud A, Galzy P (1994) Cloning of the wide spectrum amidase gene from Brevibacterium sp. R312 by genetic complementation. Overexpression in Brevibacterium sp. and Escherichia coli. FEMS Microbiol Lett 122:129–136

    Article  PubMed  CAS  Google Scholar 

  • Azza S, Moreau JL, Chebrou H, Arnaud A, Galzy P (1993) N-terminal amino acid sequence of mutant strain Brevibacterium sp. adipamidase. Antonie van Leeuwenhoek 64:35–38

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  PubMed  CAS  Google Scholar 

  • Bauer A, Layh N, Syldatk C, Willetts A (1996) Polyvinyl alcohol-immobilized whole-cell preparations for the biotransformation of nitriles. Biotechnol Lett 18:343–348

    Article  CAS  Google Scholar 

  • Baxter J, Garton NJ, Cummings SP (2006) The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil. Folia Microbiol 51:591–597

    Article  CAS  Google Scholar 

  • Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K (1992) Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 37:184–190

    Article  CAS  Google Scholar 

  • Bigey F, Grossiord B, Chion CKNCK, Arnaud A, Galzy P (1995) Brevibacterium linens pBL33 and Rhodococcus rhodochrous pRC1 cryptic plasmids replicate in Rhodococcus sp. R312 (formerly Brevibacterium sp. R312). Gene 154:77–79

    Article  PubMed  CAS  Google Scholar 

  • Bigey F, Chebrou H, Fournand D, Arnaud A (1999) Transcriptional analysis of the nitrile-degrading operon from Rhodococcus sp. ACV2 and high level production of recombinant amidase with an Escherichia coli-T7 expression system. J Appl Microbiol 86:752–760

    Article  PubMed  CAS  Google Scholar 

  • Blakey AJ, Colby J, Williams E, O’Reilly C (1995) Regio- and stereo-specific nitrile hydrolysis by the nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol Lett 129:57–62

    CAS  Google Scholar 

  • Brady D, Beeton A, Zeevaart J, Kgaje C, van Rantwijk F, Sheldon RA (2004) Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl Microbiol Biotechnol 64:76–85

    Article  PubMed  CAS  Google Scholar 

  • Brandão PFB, Bull AT (2003) Nitrile hydrolysing activities of deep-sea and terrestrial mycolate actinomycetes. Antonie van Leeuwenhoek 84:89–98

    Article  PubMed  Google Scholar 

  • Brandão PFB, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:5754–5766

    Article  PubMed  CAS  Google Scholar 

  • Bruun L, Koch C, Pedersen B, Jakobsen MH, Aamand J (2000) A quantitative enzyme-linked immunoassay for the detection of 2, 6-dichlorobenzamide (BAM), a degradation product of the herbicide dichlobenil. J Immunol Methods 240:133–142

    Article  PubMed  CAS  Google Scholar 

  • Bunch AW (1998) Biotransformation of nitriles by rhodococci. Antonie van Leeuwenhoek 74:89–97

    Article  PubMed  CAS  Google Scholar 

  • Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Carpenter K, Heywood BJ (1963) 3:5-Dihalogeno-4-hydroxybenzonitriles as herbicides: Herbicidal action of 3:5-Dihalogeno-4-hydroxybenzonitriles. Nature 200:28–29

    Article  CAS  Google Scholar 

  • Chand D, Kumar H, Sankhian UD, Kumar D, Vitzthum F, Bhalla TC (2004) Treatment of simulated wastewater containing toxic amides by immobilized Rhodococcus rhodochrous NHB-2 using a highly compact 5-stage plug flow reactor. World J Microbiol Biotechnol 20:679–686

    Article  CAS  Google Scholar 

  • Chaplin JA, Levin MD, Morgan B, Farid N, Li F, Zhu Z, McQuaid J, Nicholson LW, Rand CA, Burk MJ (2004) Chemoenzymatic approaches to the dynamic kinetic asymmetric synthesis of aromatic amino acids. Tetrahedron: Asymmetry 15:2793–2796

    Article  CAS  Google Scholar 

  • Chen C-Y, Chiu W-C, Liu J-S, Hsu W-H, Wang W-C (2003) Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase. J Biol Chem 278:26194–26201

    Article  PubMed  CAS  Google Scholar 

  • Ciskanik LM, Wilczek JM, Fallon RD (1995) Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B23. Appl Environ Microbiol 61:998–1003

    PubMed  CAS  Google Scholar 

  • Colby J, Snell D, Black GW (2000) Immobilization of Rhodococcus AJ270 and use of entrapped biocatalyst for the production of acrylic acid. Monatsh Chem 131:655–666

    Article  CAS  Google Scholar 

  • DiGeronimo MJ, Antoine AD (1976) Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21. Appl Environ Microbiol 31:900–906

    PubMed  CAS  Google Scholar 

  • Doran JP, Duggan P, Masterson M, Turner PD, O’Reilly C (2005) Expression and purification of a recombinant enantioselective amidase. Protein Expres Purif 40:190–196

    Article  PubMed  CAS  Google Scholar 

  • Duran R, Nishiyama M, Horinouchi S, Beppu T (1993) Characterization of nitrile hydratase genes cloned by DNA screening from Rhodococcus erythropolis. Biosci Biotechnol Biochem 57:1323–1328

    Article  PubMed  CAS  Google Scholar 

  • EC (2002) Opinion of the Scientific Committee on Food on new findings regarding the presence of acrylamide in food. European Commission, SCF/CS/CNTM/CONT/4 Final, http://ec.europa.eu/food/fs/sc/scf/out131_en.pdf

  • Endo I, Nojiri M, Tsujimura M, Nakasako M, Nagashima S, Yohda M, Odaka M (2001) Fe-type nitrile hydratase. J Inorg Biochem 83:247–253

    Article  PubMed  CAS  Google Scholar 

  • Endo I, Odaka M (2000) What evidences were elucidated about photoreactive nitrile hydratase? J Mol Catal B-Enzym 10:81–86

    Article  CAS  Google Scholar 

  • Endo T, Watanabe I (1989) Nitrile hydratase of Rhodococcus sp. N-774. Purification and amino acid sequences. FEBS Lett 243:61–64

    Article  PubMed  CAS  Google Scholar 

  • Fernandes BCM, Mateo C, Kiziak C, Chmura A, Wacker J, van Rantwijk F, Stolz A, Sheldon RA (2006) Nitrile hydratase activity of a recombinant nitrilase. Adv Synth Catal 348:2597–2603

    Article  CAS  Google Scholar 

  • Gotor V, Liz R, Testera AM (2004) Preparation of N-unsubstituted β-ketoamides by Rhodococcus rhodochrous-catalyzed hydration of β-ketonitriles. Tetrahedron 60:60–618

    Article  CAS  Google Scholar 

  • Harper DB (1976) Purification and properties of an unusual nitrilase from Nocardia N.C.I.B. 11216. Biochem Soc Trans 4:502–504

    PubMed  CAS  Google Scholar 

  • Harper DB (1977a) Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216. Biochem J 165:309–319

    PubMed  CAS  Google Scholar 

  • Harper DB (1977b) Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. Biochem J 167:685–692

    PubMed  CAS  Google Scholar 

  • Harper DB (1985) Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem 17:677–683

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Nishiyama M, Ikehata O, Horinouchi S, Beppu T (1991) Cloning and characterization of an amidase gene from Rhodococcus species N-774 and its expression in Escherichia coli. Biochim Biophys Acta 1088:225–233

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Nishiyama M, Horinouchi S, Beppu T (1994) Nitrile hydratase gene from Rhodococcus sp. N-774 requirement for its downstream region for efficient expression. Biosci Biotechnol Biochem 58:1859–1865

    Article  PubMed  CAS  Google Scholar 

  • Heald SC, Brandão PFB, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodoccus strains. Antonie van Leeuwenhoek 80:169–183

    Article  PubMed  CAS  Google Scholar 

  • Hirrlinger B, Stolz A, Knackmuss H-J (1996) Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J Bacteriol 178:3501–3507

    PubMed  CAS  Google Scholar 

  • Holtze MS, Sørensen J, Hansen HCB, Aamand J (2006) Transformation of the herbicide 2, 6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation 17:503–510

    Article  PubMed  CAS  Google Scholar 

  • Holtze MS, Hansen HCB, Juhler RK, Sørensen J, Aamand J (2007) Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure. Environ Pollut 148:343–351

    Article  PubMed  CAS  Google Scholar 

  • Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments – Insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ Pollut 154:155–168

    Article  PubMed  CAS  Google Scholar 

  • Hook RH, Robinson WG (1964) Ricine nitrilase. II. Purification and properties. J Biol Chem 239:4263–4267

    PubMed  CAS  Google Scholar 

  • Hsu JC, Camper ND (1976) Isolation of ioxynil degraders from soil enrichment cultures. Can J Microbiol 22:537–543

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y (1997) Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5:691–699

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Armitage YC, Symes KC (1998) Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74:107–118

    Article  PubMed  CAS  Google Scholar 

  • Hung C-L, Liu J-H, Chiu W-C, Huang S-W, Hwang J-K, Wang W-C (2007) Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. J Biol Chem 282:12220–12229

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen CS, Sørensen SR, Juhler RK, Brüsch W, Aamand J (2005) Emerging contaminants in Danish groundwater. Geological survey of Denmark and Greenland 2005/49

    Google Scholar 

  • Jallageas JC, Arnaud A, Galzy P (1980) Bioconversions of nitriles and their applications. Adv Biochem Eng 14:1–32

    Article  CAS  Google Scholar 

  • Jandhyala D, Berman M, Meyers PR, Sewell BT, Willson RC, Benedik MJ (2003) CynD, the cyanide dihydratase from Bacillus pumilus: Gene cloning and structural studies. Appl Environ Microbiol 69:4794–4805

    Article  PubMed  CAS  Google Scholar 

  • Kaakeh MR, Legras J-L, Duran R, Chion CKNCK, Arnaud A, Galzy P (1991) Purification and properties of the nitrile hydratase of a new strain of Rhodococcus sp. Zentralbl Mikrobiol 146:89–98

    CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Bojarová P, Bezouška K, Macková M, Cantarella M, Jirků V, Křen V, MartÚnková L (2006) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Google Scholar 

  • Kato Y, Ooi R, Asano Y (1998) Isolation and characterization of a bacterium possessing a novel aldoxime-dehydration activity and nitrile-degrading enzymes. Arch Microbiol 170:85–90

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Tsuda T, Asano Y (1999) Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp. strain YH3. Purification and characterization. Eur J Biochem 263:662–670

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Yoshida S, Xie SX, Asano Y (2004) Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp N-771. J Biosci Bioeng 97:250–259

    PubMed  CAS  Google Scholar 

  • Kato Y, Yoshida S, Asano Y (2005) Polymerase chain reaction for identification of aldoxime-dehydratase in aldoxime- or nitrile-degrading microorganisms. FEMS Microbiol Lett 246:243–249

    Article  PubMed  CAS  Google Scholar 

  • Kimani SW, Agarkar VB, Cowan DA, Sayed MF-R, Sewell BT (2007) Structure of an aliphatic amidase from Geobacillus pallidus RAPc8. Acta Crystallogr D Biol Crystallogr 63:1048–1058

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1. Purification and characterization. Eur J Biochem 182:349–356

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 172:4807–4815

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T, Yamada H (1991a) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim Biophys Acta 1129:23–33

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1991b) Hyperinduction of an aliphatic nitrilase by Rhodococcus rhodochrous K22. FEMS Microbiol Lett 77:121–123

    Article  CAS  Google Scholar 

  • Kobayashi M, Komeda H, Yanaka N, Nagasawa T, Yamada H (1992a) Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem 267:20746–20751

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Nagasawa T, Yamada H (1992b) Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol 10:402–408

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1992c) Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry 31:9000–9007

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H, Shimizu S (1993) Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Sequencing and expression of the gene and purification and characterization of the gene product. Eur J Biochem 217:327–336

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Shimizu S (1994) Versatile nitrilases – nitrile-hydrolyzing enzymes. FEMS Microbiol Lett 120:217–223

    Article  CAS  Google Scholar 

  • Kobayashi M, Fujiwara Y, Goda M, Komeda H, Shimizu S (1997) Identification of active sites in amidase: evolutionary relationship between amide bond- and peptide bond-cleaving enzymes. Proc Natl Acad Sci USA 94:11986–11991

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kohyama E, Yoshimura A, Aoshima D, Yoshida T, Kawamoto H, Nagasawa T (2006) Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms. Appl Microbiol Biotechnol 72:600–606

    Article  PubMed  CAS  Google Scholar 

  • Komeda H, Hori Y, Kobayashi M, Shimizu S (1996a) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93:10572–10577

    Article  PubMed  CAS  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996b) Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc Natl Acad Sci USA 93:4267–4272

    Article  PubMed  CAS  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1996c) A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J Biol Chem 271:15796–15802

    Article  PubMed  CAS  Google Scholar 

  • Komeda H, Kobayashi M, Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc Natl Acad Sci USA 94:36–41

    Article  PubMed  CAS  Google Scholar 

  • Kubáč D, Čejková A, Masák J, Jirků V, Lemaire M, Gallienne E, Bolte J, Stloukal R, Martínková L (2006) Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats®. J Mol Catal B-Enzym 39:59–61

    Article  CAS  Google Scholar 

  • Kubáč D, Kaplan O, Elišáková V, Pátek M, Vejvoda V, Slámová K, Tóthová A, Lemaire M, Gallienne E, Lutz-Wahl S, Fischer L, Kuzma M, Pelantová H, van Pelt S, Bolte J, Křen V, Martínková L (2008) Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4. J Mol Catal B-Enzym 50:107–113

    Article  CAS  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Gerchman SE, Kycia H, Studier FW, Swaminathan S (2003) Crystal structure of putative CN hydrolase from yeast. Proteins 52:283–321

    Google Scholar 

  • Langdahl BR, Bisp P, Ingvorsen K (1996) Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology 142:145–154

    Article  CAS  Google Scholar 

  • Layh N, Hirrlinger B, Stolz A, Knackmuss H-J (1997) Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674

    Article  CAS  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2000) Industrial Biotransformations. Wiley-VCH, Weinheim, pp 317–321

    Book  Google Scholar 

  • Legras JL, Chuzel G, Arnaud A, Galzy P (1990) Natural nitriles and their metabolism. World J Microbiol Biotechnol 6:83–108

    Article  CAS  Google Scholar 

  • Linton EA, Knowles CJ (1986) Utilization of aliphatic amides and nitriles by Nocardia rhodochrous LL100-21. J Gen Microbiol 132:1493–1501

    CAS  Google Scholar 

  • Malandra A, Cantarella M, Kaplan O, Vejvoda V, Uhnáková B, Štěpánková B, Kubáč D, Martínková L (2009) Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Appl Microbiol Biotechnol 85:277–284

    Article  CAS  Google Scholar 

  • MartÚnková L, Klempier N, Přepechalová I, Přikrylová V, Ovesná M, Griengl H, Křen V (1998) Chemoselective biotransformation of nitriles by Rhodococcus equi A4. Biotechnol Lett 20:909–912

    Article  Google Scholar 

  • Martínková L, Křen V (2002) Nitrile- and amide-converting microbial enzymes: Stereo-, regio- and chemoselectivity. Biocatal Biotransform 20:73–93

    Article  CAS  Google Scholar 

  • Martínková L, Mylerová V (2003) Synthetic applications of nitrile-converting enzymes. Curr Org Chem 7:1279–1295

    Article  Google Scholar 

  • Martínková L, Olšovský P, Přepechalová I, Křen V (1995) Biotransformations of aromatic dinitriles using Rhodococcus equi cells. Biotechnol Lett 17:1219–1222

    Article  Google Scholar 

  • Martínková L, Vejvoda V, Křen V (2008) Selection and screening for enzymes of nitrile metabolism. J Biotechnol 133:318–326

    Article  PubMed  CAS  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009a) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  PubMed  CAS  Google Scholar 

  • Martínková L, Vejvoda V, Kaplan O, Křen V, Bezouška K, Cantarella M (2009b) Nitrilases from filamentous fungi. In: Fessner W-D, Anthonsen T (eds) Modern Biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 229–245

    Google Scholar 

  • Masai E, Yamada A, Healy JM, Hatta T, Kimbara K, Fukuda M, Yano K (1995) Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:2079–2085

    PubMed  CAS  Google Scholar 

  • Mateo C, Fernandes B, van Rantwijk F, Stolz A, Sheldon RA (2006) Stabilisation of oxygen-labile nitrilases via co-aggregation with poly(ethyleneimine). J Mol Catal B-Enzym 38:154–157

    Article  CAS  Google Scholar 

  • Mayaux J-F, Cerbelaud E, Soubrier F, Faucher D, Pétré D (1990) Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172:6764–6773

    PubMed  CAS  Google Scholar 

  • Mayaux J-F, Cerbelaud E, Soubrier F, Yeh P, Blanche F, Pétré D (1991) Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: Structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol 173:6694–6704

    PubMed  CAS  Google Scholar 

  • McBride KE, Kenny JW, Stalker DM (1986) Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. ozaenae. Appl Environ Microbiol 52:325–330

    PubMed  CAS  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D et al (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed  Google Scholar 

  • Meth-Cohn O, Wang M-X (1997) An in-depth study of the biotransformation of nitriles into amides and/or acids using Rhodococcus rhodochrous AJ270. J Chem Soc Perkin Trans 1:1099–1104

    Article  Google Scholar 

  • Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288:1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Nagamune T, Kurata H, Hirata M, Honda J, Hirata A, Endo I (1990a) Photosensitivity phenomena of nitrile hydratase of Rhodococcus sp. N-771. Photochem Photobiol 51:87–90

    Article  CAS  Google Scholar 

  • Nagamune T, Kurata H, Hirata M, Honda J, Koike H, Ikeuchi M, Inoue Y, Hirata A, Endo I (1990b) Purification of inactivated photoresponsive nitrile hydratase. Biochem Biophys Res Commun 168:437–442

    Article  PubMed  CAS  Google Scholar 

  • Nagamune T, Honda J, Cho W-D, Kamiya N, Teratani Y, Hirata A, Sasabe H, Endo I (1991) Crystallization of a photosensitive nitrile hydratase from Rhodococcus sp. N-771. J Mol Biol 220:221–222

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa T, Ryuno K, Yamada H (1986) Nitrile hydratase of Brevibacterium R312. Purification and characterization. Bichem Biophys Res Commun 139:1305–1312

    Article  CAS  Google Scholar 

  • Nagasawa T, Mathew CD, Mauger J, Yamada H (1988) Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol 54:1766–1769

    PubMed  CAS  Google Scholar 

  • Nagasawa T, Takeuchi K, Yamada H (1991) Characterization of a new cobalt-containing nitrile hydratase purified from urea-induced cells of Rhodococcus rhodochrous J1. Eur J Biochem 196:581–589

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur J Biochem 267:138–144

    Article  PubMed  CAS  Google Scholar 

  • Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T (2000) Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 8:729–738

    Article  PubMed  CAS  Google Scholar 

  • Nakasako M, Odaka M, Yohda M, Dohmae N, Takio K, Kamiya N, Endo I (1999) Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: Roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Biochemistry 38:9887–9898

    Article  PubMed  CAS  Google Scholar 

  • Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I (1999) Functional expression of nitrile hydratase in Escherichia coli: Requirement of a nitrile hydratase activator and post-translational modification of a ligand cysteine. J Biochem 125:696–704

    Article  PubMed  CAS  Google Scholar 

  • Nojiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I (2000) Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. FEBS Lett 465:173–177

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65:828–838

    Article  PubMed  CAS  Google Scholar 

  • O’Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O'Reilly C (2005) Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie van Leeuwenhoek 87:221–232

    Article  PubMed  CAS  Google Scholar 

  • O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (2006) The Merck Index. An encyclopedia of chemicals, drugs, and biologicals, 14th edn. Merck, Whitehouse Station, NJ, USA

    Google Scholar 

  • O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes – a comparative study. J Appl Microbiol 95:1161–1174

    Article  PubMed  CAS  Google Scholar 

  • Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. J Mol Catal B-Enzym 24–25:89–98

    Article  CAS  Google Scholar 

  • Osprian I, Jarret C, Strauss U, Kroutil W, Orru RVA, Felfer U, Willetts AJ, Faber K (1999) Large-scale preparation of a nitrile-hydrolysing biocatalyst: Rhodococcus R 312 (CBS 717.73). J Mol Catal B-Enzym 6:555–560

    Article  CAS  Google Scholar 

  • Oßwald S, Wajant H, Effenberger F (2002) Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Eur J Biochem 269:680–687

    Article  Google Scholar 

  • Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, Croce CM, Brenner C (2000) Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol 10:907–917

    Article  PubMed  CAS  Google Scholar 

  • Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:0001

    Article  Google Scholar 

  • Payne MS, Wu SJ, Fallon RD, Tudor G, Stieglitz B, Turner IM Jr, Nelson MJ (1997) A stereoselective cobalt-containing nitrile hydratase. Biochemistry 36:5447–5454

    Article  PubMed  CAS  Google Scholar 

  • Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353

    Article  CAS  Google Scholar 

  • Precigou S, Goulas P, Duran R (2001) Rapid and specific identification of nitrile hydratase (NHase)-encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol Lett 204:155–161

    Article  PubMed  CAS  Google Scholar 

  • Přepechalová I, Martínková L, Stolz A, Ovesná M, Bezouška K, Kopecký J, Křen V (2001) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Appl Microbiol Biotechnol 55:150–156

    Article  PubMed  Google Scholar 

  • Roach PCJ, Ramsden DK, Hughes J, Williams P (2003) Development of a conductimetric biosensor using immobilised Rhodococcus ruber whole cells for the detection and quantification of acrylonitrile. Biosens Bioelectron 19:73–78

    Article  PubMed  CAS  Google Scholar 

  • Roach PCJ, Ramsden DK, Hughes J, Williams P (2004) Biocatalytic scrubbing of gaseous acrylonitrile using Rhodococcus ruber immobilized in synthetic silicone polymer (ImmobaSilTM) rings. Biotechnol Bioeng 85:450–455

    Article  PubMed  CAS  Google Scholar 

  • Sakai N, Tajika Y, Yao M, Watanabe N, Tanaka I (2004) Crystal structure of hypothetical protein PH0642 from Pyrococcus horikoshii at 1.6 Å resolution. Proteins 57:869–873

    Article  PubMed  CAS  Google Scholar 

  • Sewell BT, Berman MN, Meyers PR, Jandhyala D, Benedik MJ (2003) The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11:1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformation. Adv Synth Catal 345:425–435

    Article  CAS  Google Scholar 

  • Singh R, Sharma R, Tewari N, Geetanjali, Rawat DS (2006) Nitrilase and its application as a ‘green’ catalyst. Chem Biodivers 3:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Song L, Wang MX, Yang X, Qian S (2007) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270. Biotechnol J 2:717–724

    Article  PubMed  CAS  Google Scholar 

  • Sørensen SR, Holtze MS, Simonsen A, Aamand J (2006) Degradation and mineralization of nano-molar concentrations of the herbicide dichlobenil and its persistent metabolite 2, 6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl Environ Microbiol 73:399–406

    Article  PubMed  CAS  Google Scholar 

  • Stevenson DE, Feng R, Dumas F, Groleau D, Mihoc A, Storer AC (1992) Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnol Appl Biochem 15:283–302

    PubMed  CAS  Google Scholar 

  • Stolz A, Trott S, Binder M, Bauer R, Hirrlinger B, Layh N, Knackmuss H-J (1998) Enantioselective nitrile hydratases and amidases from different bacterial isolates. J Mol Catal B-Enzym 5:137–141

    Article  CAS  Google Scholar 

  • Sugai T, Yamazaki T, Yokoyama M, Ohta H (1997) Biocatalysis in organic synthesis: The use of nitrile- and amide-hydrolyzing microorganisms. Biosci Biotechnol Biochem 61:1419–1427

    Article  CAS  Google Scholar 

  • Takarada H, Kawano Y, Hashimoto K, Nakayama H, Ueda S, Yohda M, Kamiya N, Dohmae N, Maeda M, Odaka M (2006) Mutational study on αGln90 of Fe-type nitrile hydratase from Rhodococcus sp. N771. Biosci Biotechnol Biochem 70:881–889

    Article  PubMed  CAS  Google Scholar 

  • Thiery A, Maestracci M, Arnaud A, Galzy P, Nicolas M (1986) Purification and properties of an acylamide amidohydrolase (E.C.3.5.1.4.) with a wide activity spectrum from Brevibacterium sp. R312. J Basic Microbiol 26:299–311

    CAS  Google Scholar 

  • Thimann KV, Mahadevan S (1964) Nitrilase. I. Occurrence, preparation and general properties of the enzyme. Arch Biochem Biophys 105:133–141

    Article  PubMed  Google Scholar 

  • Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274:2099–2108

    Article  PubMed  CAS  Google Scholar 

  • Trott S, Bürger S, Calaminus C, Stolz A (2002) Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Appl Environ Microbiol 68:3279–3286

    Article  PubMed  CAS  Google Scholar 

  • van Pelt S, Quignard S, Kubáč D, Sorokin DY, van Rantwijk F, Sheldon RA (2008) Nitrile hydratase CLEAs: the immobilization and stabilization of an industrially important enzyme. Green Chem 10:395–400

    Article  CAS  Google Scholar 

  • Vaughan PA, Knowles CJ, Cheetham PSJ (1989) Conversion of 3-cyanopyridine to nicotinic acid by Nocardia rhodochrous LL100-21. Enzyme Microb Technol 11:815–823

    Article  CAS  Google Scholar 

  • Vejvoda V, Kaplan O, Kubáč D, Křen V, Martínková L (2006) Immobilization of fungal nitrilase and bacterial amidase – two enzymes working in accord. Biocatal Biotransform 24:414–418

    Article  CAS  Google Scholar 

  • Vejvoda V, Kaplan O, Bezouška K, Pompach P, Šulc M, Cantarella M, Benada O, Uhnáková B, Rinágelová A, Lutz-Wahl S, Fischer L, Křen V, Martínková L (2008) Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B-Enzym 50:99–106

    Article  CAS  Google Scholar 

  • Veselà AB, Franc M, Pelantovà H, KubÃč D, Vejvoda V, Šulc M, Bhalla TC, Mackovà M, Loveckà P, Janů P, Demnerovà K, MartÚnkovà L (2010) Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation, DOI: 10.1007/s10532-010-9341-4

    PubMed  Google Scholar 

  • Vink MK, Wijtmans R, Reisinger C, van den Berg RJ, Schortinghuis CA, Schwab H, Schoemaker HE, Rutjes FP (2006) Nitrile hydrolysis activity of Rhodococcus erythropolis NCIMB 11540 whole cells. Biotechnol J 1:569–573

    Article  PubMed  CAS  Google Scholar 

  • Wang MX, Lin SJ (2002) Practical and convenient enzymatic synthesis of enantiopure alpha-amino acids and amides. J Org Chem 67:6542–6545

    Article  PubMed  CAS  Google Scholar 

  • Wang MX (2005) Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 35:117–130

    Article  CAS  Google Scholar 

  • Watanabe I, Satoh Y, Enomoto K (1987) Screening, isolation and taxonomical properties of microorganisms having acrylonitrile-hydrating activity. Agric Biol Chem 51:3193–3199

    Article  CAS  Google Scholar 

  • Webster NA, Ramsden DK, Hughes J (2001) Comparative characterisation of two Rhodococcus species as potential biocatalysts for ammonium acrylate production. Biotechnol Lett 23:95–101

    Article  CAS  Google Scholar 

  • Wieser M, Takeuchi K, Wada Y, Yamada H, Nagasawa T (1998) Low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1: purification, substrate specificity and comparison with the analogous high-molecular-mass enzyme. FEMS Microbiol Lett 169:17–22

    Article  CAS  Google Scholar 

  • Winkler M, Martínková L, Knall AC, Krahulec S, Klempier N (2005) Synthesis and microbial transformation of β-amino nitriles. Tetrahedron 61:4249–4260

    Article  CAS  Google Scholar 

  • Woodward JD, Weber BW, Scheffer MP, Benedik MJ, Hoenger A, Sewell BT (2008) Helical structure of unidirectionally shadowed metal replicas of cyanide hydratase from Gloeocercospora sorghi. J Struct Biol 161:111–119

    Article  PubMed  CAS  Google Scholar 

  • Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry 42:12056–12066

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Bioeng 60:1391–1400

    Article  CAS  Google Scholar 

  • Yokoyama M, Imai N, Sugai T, Ohta H (1996) Preparation of both enantiomers of methyl 3-benzoyloxypentanoate by enzyme-catalysed hydrolysis of corresponding racemic nitrile and amide. J Mol Catal B-Enzym 1:135–141

    Article  CAS  Google Scholar 

  • Yue Y, Lian J, Tian P, Tan T (2009) Cloning of amidase gene from Rhodococcus erythropolis and expession by distinct promoters in Bacillus subtilis. J Mol Catal B-Enzym 56:89–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support via projects FT-TA5/043 (Ministry of Industry and Trade of the Czech Republic), LC06010, OC09046 (Ministry of Education of the Czech Republic), and the institutional research concept AV0Z50200510 (Institute of Microbiology) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Martínková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínková, L., Pátek, M., Veselá, A.B., Kaplan, O., Uhnáková, B., Nešvera, J. (2010). Catabolism of Nitriles in Rhodococcus . In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12937-7_7

Download citation

Publish with us

Policies and ethics