Skip to main content

Rhodococcus Biosurfactants: Biosynthesis, Properties, and Potential Applications

  • Chapter
  • First Online:
Biology of Rhodococcus

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Members of the genus Rhodococcus produce biosurfactants in response to the presence of liquid hydrocarbons in the growth medium. These biosurfactants are predominantly cell-bound glycolipids containing trehalose as the carbohydrate. Physiological roles of these glycolipids are diverse and involve participation in the uptake of water-insoluble substrates, promotion of the cell adhesion to hydrophobic surfaces, and increased rhodococcal resistance to physicochemical influences. In terms of surfactant characteristics (e.g., surface and interfacial tension, critical micelle concentration, emulsifying activity), Rhodococcus biosurfactants compete favorably with other microbial and synthetic surfactants. Additionally, biological activities of trehalolipids from rhodococci were revealed, including immunomodulating and antitumor properties. Recently developed optimization procedures for their biosynthesis and recovery would broaden potential applications of Rhodococcus biosurfactants in new advanced technologies, such as environmental bioremediation, improved polymeric material construction, and biomedicine. The present chapter summarizes recent research on Rhodococcus biosurfactants, updating the comprehensive review of Lang and Philp (Antonie van Leeuwenhoek Int J Gen Mol Microbiol 74:59–70, 1998), and focuses on biosynthesis features, physicochemical and bioactive properties, and their application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhay A, Magnin J-P, Gondrexon N, Baup S, Willison J (2009) Adaptation of a Mycobacterium strain to phenanthrene degradation in a biphasic culture system: influence on interfacial area and droplet size. Biotechnol Lett 31:57–63

    Article  PubMed  CAS  Google Scholar 

  • Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86

    Article  PubMed  CAS  Google Scholar 

  • Aranda FJ, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Palacios-Lidon E, Ortiz A (2007) Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes. Biochem Biophys Acta 1768:2596–2604

    Article  PubMed  CAS  Google Scholar 

  • Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Env Microbiol 7:3195–3204

    Article  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  PubMed  CAS  Google Scholar 

  • Batrakov SG, Rozynov BV, Koronelli TV, Bergelson LD (1981) Two novel types of trehalose lipids. Chem Phys Lipids 29:241–266

    Article  CAS  Google Scholar 

  • Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    Article  PubMed  CAS  Google Scholar 

  • Bicca FC, Fleck LC, Ayub ZMA (1999) Production of biosurfactant bt hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Revista de Microbiologia 30:231–236

    Article  CAS  Google Scholar 

  • Billingsley KA, Backus SM, Wilson S, Singh A, Ward OP (2002) Remediation of PCBs in soil by surfactant washing and biodegradation in the wash by Pseudomonas sp. LB400. Biotechnol Lett 24:1827–1832

    Article  CAS  Google Scholar 

  • Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele J-P (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    Article  PubMed  Google Scholar 

  • Bryant F (1990) Improved method for the isolation of biosurfactant glycolipids from Rhodococcus sp. strain H13A. Appl Environ Microbiol 56:494–1496

    Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  PubMed  CAS  Google Scholar 

  • Choi K-S, Kim S-H, Lee T-H (1999) Purification and characterization of biosurfactant from Tsukamurella sp. 26A. J Microbiol Biotechnol 9:32–38

    CAS  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929

    Article  PubMed  CAS  Google Scholar 

  • Cooper DG, Zajic JE, Gerson DF (1979) Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol 37:4–10

    PubMed  CAS  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel contaminated soil by microorganisms immobilised in a polyvinyl alcohol cryogel. Int Biodeterior Biodegrad 54:167–174

    Article  CAS  Google Scholar 

  • De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208

    PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH (1999) Surfactant selection for enhancing ex situ soil washing. Water Res 33:351–360

    Article  CAS  Google Scholar 

  • Espuny MJ, Egido S, Mercade ME, Manresa A (1995) Characterization of trehalose tetraester produced by a waste lube oil degrader Rhodococcus sp. Toxicol Environ Chem 48:83–88

    Article  CAS  Google Scholar 

  • Haba E, Bresco O, Ferrer C, Marqués A, Busquets M, Manresa A (2000) Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme Microb Technol 26:40–44

    Article  CAS  Google Scholar 

  • Haddadin MSY, Arqoub AAA, Reesh IA, Haddadin J (2009) Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Conver Manage 50:983–990

    Article  CAS  Google Scholar 

  • Hoq MM, Suzutani T, Toyoda T, Horiike G, Yoshida I, Azuma M (1997) Role of γδ TCRM lymphocytes in the augmented resistance of trehalose 6, 6-dimycolate-treated mice to influenza virus infection. J Gen Virol 78:1597–1603

    PubMed  CAS  Google Scholar 

  • Ivshina IB (2001) Operation and establishment of a Russian biological resource centre. WFCC Newsl 33:8–14

    Google Scholar 

  • Ivshina IB, Kuyukina MS, Philp JC, Christo N (1998) Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol 14:711–717

    Article  CAS  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Nakajima M, Harayama S (2000) Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl Environ Microbiol 66:5073–5077

    Article  PubMed  CAS  Google Scholar 

  • Kacem R, De Sousa-D’Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffé M (2004) Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology 150:73–84

    Article  PubMed  CAS  Google Scholar 

  • Kamenskikh TN, Kuyukina MS, Ivshina IB (2004) Some features in preserving actinobacteria of the genus Rhodococcus. Perm University Herald Biol Iss 2:110–113

    Google Scholar 

  • Kanga SA, Bonner JS, Page CA, Mills MA, Autenrieth RL (1997) Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactant. Environ Sci Technol 31:556–561

    Article  CAS  Google Scholar 

  • Kim J-S, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253

    Article  PubMed  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants – from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    PubMed  CAS  Google Scholar 

  • Kosaric N (1992) Biosurfactants in industry. Pure Appl Chem 64:1731–1737

    Article  CAS  Google Scholar 

  • Kretschmer A, Wagner F (1983) Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870

    Google Scholar 

  • Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Tajima T, Hirano M, Taniguchi Y (1995) Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci Biotech Biochem 59:1652–1656

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Ritchkova MI, Chumakov OB (2000) Effect of cell lipid composition on the formation of non-specific antibiotic resistance in alkanotrophic rhodococci. Microbiology 69:51–57

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46:149–156

    Article  PubMed  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  PubMed  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Gavrin YuA, Podorozhko EA, Lozinsky VI, Jeffree CE, Philp JC (2006) Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant. J Microbiol Methods 65:596–603

    Article  PubMed  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA (2007) In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull Exp Biol Med 144:326–330

    Article  PubMed  CAS  Google Scholar 

  • Lang S (2002) Biological amphiphiles microbial biosurfactants. Curr Opin Colloid Interf Sci 7:12–20

    Article  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 74:59–70

    Article  CAS  Google Scholar 

  • LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636

    Article  PubMed  CAS  Google Scholar 

  • Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121

    Article  PubMed  CAS  Google Scholar 

  • Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22:2280–2292

    Article  PubMed  CAS  Google Scholar 

  • Marqués AM, Pinazo Farfan AM, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117

    Article  PubMed  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  PubMed  CAS  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    PubMed  CAS  Google Scholar 

  • Nguyen L, Chinnapapagari S, Thompson CJ (2005) FbpA-dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol 187:6603–6611

    Article  PubMed  CAS  Google Scholar 

  • Niescher VW, Lang S, Kaschabek SR, Schlömann M (2006) Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611

    Article  PubMed  CAS  Google Scholar 

  • Noordman WH, Wachter JHJ, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94:195–212

    Article  PubMed  CAS  Google Scholar 

  • Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ (2008) Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim Biophys Acta 1778:2806–2813

    Article  PubMed  CAS  Google Scholar 

  • Ortiz A, Teruela JA, Espuny MJ, Marqués A, Manresa A, Aranda FJ (2009) Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem Phys Lipids 158:46–53

    Article  PubMed  CAS  Google Scholar 

  • Page CA, Bonner JS, Kanga SA, Mills MA, Autenrieth RL (1999) Biosurfactant solubilization of PAHs. Environ Eng Sci 16:465–474

    Article  CAS  Google Scholar 

  • Pal MP, Vaidya BK, Desai KM, Joshi RM, Nene SN, Kulkarni BD (2009) Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach. J Ind Microbiol Biotechnol 36:747–756

    Article  PubMed  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Coll Interf Sci 138:24–58

    Article  CAS  Google Scholar 

  • Passeri A, Lang S, Wagner F, Wray V (1991) Marine biosurfactants, II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. J Biosci 46:204–209

    CAS  Google Scholar 

  • Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  PubMed  CAS  Google Scholar 

  • Philp JC, Kuyukina MS, Ivshina IB, Dunbar SA, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59:318–324

    Article  PubMed  CAS  Google Scholar 

  • Pirog TP, Shevchuk TA, Voloshina IN, Karpenko EV (2004) Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol 40:470–475

    Article  CAS  Google Scholar 

  • Rapp P, Gabriel-Jürgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–2890

    Article  PubMed  CAS  Google Scholar 

  • Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503

    CAS  Google Scholar 

  • Rapp P, Bock H, Urban E, Wagner F, Gebetsberger W, Schulz W (1977) Mikrobielle Bildung eines Trehaloselipids und seine Anwendung in Modellversuchen zum Tensidfluten von Erdollagerstatten. Dechema-Monographie Biotechnologie 81:177–186

    CAS  Google Scholar 

  • Retzinger GS, Meredith SC, Takayama K, Hunter RL, Kezdy FJ (1981) The role of surface in the biological activities of trehalose 6, 6-dimicolate. J Biol Chem 256:8208–8216

    PubMed  CAS  Google Scholar 

  • Ristau E, Wagner F (1983) Formation of novel anionic trehalose tetraesters from Rhodococcus erythropolis under growth-limiting conditions. Biotechnol Lett 5:95–100

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  PubMed  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  PubMed  CAS  Google Scholar 

  • Ryll R, Kumazawa Y, Yano I (2001) Immunological properties of trehalose dimycolate cord factor and other mycolic acid-containing glycolipids – a review. Microbiol Immunol 45:801–811

    PubMed  CAS  Google Scholar 

  • Sadouk Z, Hacene H, Tazerouti A (2008) Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci Technol 63:747–753

    Article  CAS  Google Scholar 

  • Sakaguchi I, Ikeda N, Nakayama N, Kato Y, Yano I, Kaneda K (2000) Trehalose 6, 6-dimycolate cord factor neovascularization trough vascular endothelial growth factor production by neutrophiles and macrophages. Infect Immunity 68:2043–2052

    Article  CAS  Google Scholar 

  • Singer MEV, Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol 36:741–745

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  PubMed  CAS  Google Scholar 

  • Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027

    Article  PubMed  CAS  Google Scholar 

  • Stainsby FM, Philp JC, Dunbar S, Ivshina IB, Kuyukina MS (2005) Microbial foaming and bulking in activated sludge plants. In: Lehr H, Keeley J, Lehr J, Kingery TB III (eds) Water encyclopedia: domestic, municipal, and industrial water supply and waste disposal. Wiley, New Jersey, pp 844–848

    Google Scholar 

  • Sung N, Takayama K, Collins MT (2004) Possible association of GroES and Antigen 85 proteins with heat resistance of Mycobacterium paratuberculosis. Appl Environ Microbiol 70:1688–1697

    Article  PubMed  CAS  Google Scholar 

  • Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of succionyl trehalose lipid produced by Rhodococcus sp SD-74. J Oleo Sci 58:97–102

    Article  PubMed  CAS  Google Scholar 

  • Tomiyasu I, Yoshinaga J, Kurano F, Kato Y, Kaneda K, Imaizumi S, Yano I (1986) Occurrence of a novel glycolipid, ‘trehalose 2,3,6′-trimycolate in a psychrophilic, acid-fast bacterium, Rhodococcus aurantiacus (Gordona aurantiaca). FEBS Lett 203:239–242

    Article  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710

    Article  PubMed  CAS  Google Scholar 

  • Tzvetkov M, Klopprogge C, Zelder O, Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149:1659–1673

    Article  PubMed  CAS  Google Scholar 

  • Van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Cur Opin Microbiol 7:255–261

    Article  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  PubMed  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Innis WE, Greer SW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria S. Kuyukina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuyukina, M.S., Ivshina, I.B. (2010). Rhodococcus Biosurfactants: Biosynthesis, Properties, and Potential Applications. In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12937-7_11

Download citation

Publish with us

Policies and ethics