Skip to main content

Physiology, Biochemistry, and Molecular Biology of Triacylglycerol Accumulation by Rhodococcus

  • Chapter
  • First Online:
Biology of Rhodococcus

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Members of Rhodococcus genus are specialists in the accumulation of triacylglycerols (TAGs). Some of them can be considered oleaginous microorganisms since they are able to produce significant amounts of those lipids under certain conditions. In this context, R. opacus strain PD630 has become a model among prokaryotes in this research area. The basic knowledge generated for rhodococci could be also extrapolated to other related microorganisms with clinical importance, such as mycobacteria. The biosynthesis and accumulation of TAGs by Rhodococcus members and other actinomycetes seems to be a process linked to the stationary growth phase or as a response to stress. The chemical structure of rhodococcal TAGs can be controlled by the composition of the carbon source used. The biosynthesis and accumulation of novel TAGs containing unusual components, such as aromatic and isoprenoid fatty acids, by members of Rhodococcus and related genera have been reported. The low specificity of wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) enzymes, which catalyze TAG biosynthesis in prokaryotes, may contribute to the high variability of TAG composition. The occurrence of genes coding for WS/DGAT enzymes is highly redundant in rhodococcal genomes. The enrichment of genes and enzymes involved in TAG metabolism in rhodococci suggests the important role of these lipids in the physiology of these microorganisms. This article aims to summarize the most relevant achievements of basic research in this field, including the most recent knowledge that has emerged from studies on TAG accumulation by rhodococci and some unpublished results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:808–813

    Article  Google Scholar 

  • Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeter Biodegradation 52:35–42

    Article  CAS  Google Scholar 

  • Alvarez HM (2006) Bacterial triacylglycerols. In: Welson LT (ed) Triglycerides and cholesterol research, vol 6. Nova Science, New York, pp 159–176

    Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  PubMed  CAS  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  PubMed  CAS  Google Scholar 

  • Alvarez HM, Pucci OH, Steinbüchel A (1997a) Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47:132–139

    Article  CAS  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (1997b) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett/Lipid 99:239–246

    Article  CAS  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223

    Article  PubMed  CAS  Google Scholar 

  • Alvarez HM, Souto MF, Viale A, Pucci OH (2001) Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett 200:195–200

    Article  PubMed  CAS  Google Scholar 

  • Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiology 148:1407–1412

    PubMed  CAS  Google Scholar 

  • Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:75–86

    Article  PubMed  CAS  Google Scholar 

  • Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleogenous bacterium Rhodococcus opacus PD630. Microbiology 154:2327–2335

    Article  PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Williams D, Dawes EA, Ewing D (1995) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Rhodococcus ruber. Can J Microbiol 41:4–13

    Article  CAS  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  PubMed  CAS  Google Scholar 

  • Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582

    Article  PubMed  CAS  Google Scholar 

  • Banchio C, Gramajo H (2002) A stationary-phase acyl-coenzyme A synthetase of Streptomyces coelicolor A3 (2) is necessary for the normal onset of antibiotic production. Appl Environ Microbiol 68:4240–4246

    Article  PubMed  CAS  Google Scholar 

  • Bloch K (1977) Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol 45:1–84

    PubMed  CAS  Google Scholar 

  • Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 52:579–583

    Google Scholar 

  • Brennan PJ (1988) Mycobacterium and other actinomycetes. In: Ratledge C, Wilkinson SG (eds) Microbial Lipids, vol 1. Academic Press, Harcourt Brace Jovanovich, San Diego, pp 203–298

    Google Scholar 

  • Cronan JE Jr, Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407–435

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lanman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 12:6487–6492

    Article  Google Scholar 

  • Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030

    Article  PubMed  CAS  Google Scholar 

  • Daniel J, Oh TJ, Lee CM, Kolattukudy PE (2007) AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J Bacteriol 189:911–917

    Article  PubMed  CAS  Google Scholar 

  • Diacovich L, Peiru S, Kurth D, Rodriguez E, Podesta F, Khosla C, Gramajo H (2002) Kinetic and structural analysis of a new group of acyl-CoA carboxylases found in Streptomyces coelicolor A3(2). J Biol Chem 277:31228–31236

    Article  PubMed  CAS  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1325–1338

    Article  Google Scholar 

  • Feisthauer S, Wick LY, Kästner M, Kaschabek SR, Schlömann M, Richnow HH (2008) Differences of heterotrophic 13CO2 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing. Environ Microbiol 10:1641–1651

    Article  PubMed  CAS  Google Scholar 

  • Gago G, Kurth D, Diacovich L, Tsai SC, Gramajo H (2006) Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J Bacteriol 188:477–486

    Article  PubMed  CAS  Google Scholar 

  • Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148:2951–2958

    PubMed  CAS  Google Scholar 

  • Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agroindustrial wastes. World J Microbiol Biotechnol 24:1703–1711

    Article  CAS  Google Scholar 

  • Hänisch J, Wältermann M, Robenek H, Steinbüchel A (2006a) The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Microbiology 152:3271–3280

    Article  PubMed  Google Scholar 

  • Hänisch J, Wältermann M, Robenek H, Steinbüchel A (2006b) Eukaryotic lipid body proteins in oleogenous actinomycetes and their targeting to intracellular triacylglycerol inclusions: impact on models of lipid body biogenesis. Appl Environ Microbiol 72:6743–6750

    Article  PubMed  Google Scholar 

  • Heald SC, Brandão PF, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie van Leeuwenhoek 80:169–183

    Article  PubMed  CAS  Google Scholar 

  • Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 12(9):600

    Article  Google Scholar 

  • Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189:3804–3812

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Abe M, Unno H (2009) Production of triacylglycerol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the toluene-degrading bacterium Rhodococcus aetherivorans IAR1. J Biosci Bioeng 108:319–324

    Google Scholar 

  • Huisman GW, Siegele DA, Zambrano MM, Kolter R (1993) Morphological and physiological changes during stationary phase. In: Neidhardt FC, Ingraham JL, Low KB, Magsanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington DC, pp 1672–1682

    Google Scholar 

  • Jurasek L, Marchessault RH (2004) Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation. Appl Microbiol Biotechnol 64:611–617

    Article  PubMed  CAS  Google Scholar 

  • Kaddor C, Biermann K, Kalscheuer R, Steinbüchel A (2009) Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Appl Microbiol Biotechnol 84:143–155

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  PubMed  CAS  Google Scholar 

  • Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333

    Article  PubMed  CAS  Google Scholar 

  • Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:250–258

    PubMed  CAS  Google Scholar 

  • Manilla-Pérez E, Reers C, Baumgart M, Hetzler S, Reichelt R, Malkus U, Kalscheuer R, Wältermann M, Steinbüchel A (2010) Analysis of lipid export in hydrocarbonoclastic bacteria of the genus Alcanivorax: identification of lipid export-negative mutants of A. borkumensis SK2 and A. jadensis T9. J Bacteriol 192:643–656

    Article  PubMed  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FSL, Miyauchi K, Fukuda F, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  PubMed  CAS  Google Scholar 

  • Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140:931–943

    Article  PubMed  CAS  Google Scholar 

  • Peng F, Wang Y, Sun F, Liu Z, Lai Q, Shao Z (2008) A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 105:698–705

    Article  PubMed  CAS  Google Scholar 

  • Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamic of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution on patagonic soil. Int Biodeter Biodegradation 52:21–30

    Article  CAS  Google Scholar 

  • Pieper U, Steinbüchel A (1992) Identification, cloning and sequence analysis of the poly(3-hydroxyalkanoic acid) synthase gene of the Gram-positive bacterium Rhodococcus ruber. FEMS Microbiol Lett 96:73–80

    Article  CAS  Google Scholar 

  • Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B et al (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150:2301–2311

    Article  PubMed  Google Scholar 

  • Pucci OH, Bak MA, Peressutti SR, Klein SR, Härtig C, Alvarez HM, Wünsche L (2000) Influence of crude oil contamination on the bacterial community of semi-arid soils of Patagonia (Argentina). Acta Biotechnol 10:129–146

    Article  Google Scholar 

  • Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196

    Article  PubMed  CAS  Google Scholar 

  • Rontani JF, Mouzdahir A, Michotey V, Caumette P, Bonin P (2003) Production of a polyunsaturated isoprenoid wax ester during aerobic metabolism of squalene by Marinobacter squalenivorans sp. nov. Appl Environ Microbiol 69:4167–4176

    Article  PubMed  CAS  Google Scholar 

  • Röttig A, Wenning L, Bröker D, Steinbüchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733

    Article  PubMed  Google Scholar 

  • Sabirova JS, Ferrer M, Lünsdorf H, Wray V, Kalscheuer R, Steinbüchel A, Timmis KN, Golyshin PN (2006) Mutation in a “tesB-like” hydroxyacyl-coenmzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J Bacteriol 188:8452–8459

    Article  PubMed  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Shweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517

    Article  Google Scholar 

  • Silva RA, Grossi V, Alvarez HM (2007) Biodegradation of phytane (2,6,10,14-tetramethylhexadecane) and accumulation of related isoprenoid wax esters by Mycobacterium ratisbonense strain SD4 under nitrogen-starved conditions. FEMS Microbiol Lett 272:220–228

    Article  PubMed  CAS  Google Scholar 

  • Silva RA, Grossi V, Olivera NL, Alvarez HM (2010) Characterization of the indigenous Rhodococcus sp. 602, a strain able to accumulate triacylglycerides from naphthyl compounds under nitrogen-starved conditions. Res Microbiol 161:198–207

    Google Scholar 

  • Skujins J (1984) Microbial ecology of desert soils. Adv Microbiol Ecol 7:49–91

    Article  Google Scholar 

  • Sorger D, Daum G (2002) Synthesis of triacylglycerols by the acyl-Coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol 184:519–524

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. MacMillan, London, pp 123–213

    Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Stöveken T, Steinbüchel A (2008) Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed 47:3688–3694

    Article  Google Scholar 

  • Uthoff S, Bröker D, Steinbüchel A (2009) Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2:551–565

    Article  PubMed  CAS  Google Scholar 

  • Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot scale. Appl Microbiol Biotechnol 55:547–555

    Article  PubMed  CAS  Google Scholar 

  • Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52:537–579

    Article  PubMed  CAS  Google Scholar 

  • Wältermann M, Steinbüchel A (2000) In vitro effects of sterculic acid on lipid biosynthesis in Rhodococcus opacus strain PD630 and isolation of mutants defective in fatty acid desaturation. FEMS Microbiol Lett 190:45–50

    PubMed  Google Scholar 

  • Wältermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbüchel A (2000) Rhodococcus opacus PD630 as a source of high-value single cell oil? Isolation and characterisation of triacylglycerols and other storage lipids. Microbiology 146:1143–1149

    PubMed  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla H-J, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  PubMed  Google Scholar 

  • Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242

    Article  PubMed  Google Scholar 

  • Warton B, Matthiessen JN, Roper MM (2001) The soil organisms responsible for the enhanced biodegradation of metham sodium. Biol Fertil Soils 34:264–269

    Article  CAS  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CHW (1998) Biodegradation of variable-chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    PubMed  CAS  Google Scholar 

  • Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177:2425–2435

    PubMed  CAS  Google Scholar 

  • Zimhony O, Vilchèze C, Jacobs WR Jr (2004) Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J Bacteriol 186:4051–4055

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor M. Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alvarez, H.M., Steinbüchel, A. (2010). Physiology, Biochemistry, and Molecular Biology of Triacylglycerol Accumulation by Rhodococcus. In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12937-7_10

Download citation

Publish with us

Policies and ethics