Application of Differential Evolution to a Two-Dimensional Inverse Scattering Problem

  • Krishna Agarwal
  • Xudong Chen
  • Yu Zhong
Part of the Evolutionary Learning and Optimization book series (ALO, volume 4)


Inverse scattering problems [1]-[2] are of great importance in non-destructive and non-invasive evaluation applications. Typically, the region of investigation is inaccessible and has to be evaluated using different approaches including electromagnetic waves. In such scenarios, the region is illuminated by electromagnetic waves from various directions and the electromagnetic fields scattered by objects in the region are measured at various receivers. The electrical and geometric properties of objects present inside the region are then reconstructed using the measured scattered electromagnetic fields.


Differential Evolution Initial Guess Relative Permittivity Differential Evolution Algorithm Inverse Scattering Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qing, A., Lee, C.K., Jen, L.: Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm. IEEE Trans. Geoscience Remote Sensing 39(3), 665–676 (2001)CrossRefGoogle Scholar
  2. 2.
    Qing, A., Gan, Y.B.: Electromagnetic inverse problems. In: Chang, K. (ed.) Encyclopedia of RF and Microwave Engineering, vol. 2, pp. 1200–1216. John Wiley, New York (2005)Google Scholar
  3. 3.
    Michalski, K.A.: Electromagnetic imaging of circular-cylindrical conductors and tunnels using a differential evolution algorithm. Microwave Optical Technology Letters 27(5), 330–334 (2000)CrossRefGoogle Scholar
  4. 4.
    Michalski, K.A.: Electromagnetic imaging of elliptical-cylindrical conductors and tunnels using a differential evolution algorithm. Microwave Optical Technology Letters 28(3), 164–169 (2001)CrossRefGoogle Scholar
  5. 5.
    Qing, A.: Electromagnetic imaging of two-dimensional perfectly conducting cylinders with transverse electric scattered field. IEEE Trans. Antennas Propagation 50(12), 1786–1794 (2002)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Ge, M., Yan, W.: Image reconstruction of EIT using differential evolution algorithm. In: 25th IEEE Annual Int. Conf. Engineering Medicine Biology Society, September 17-21, vol. 2, pp. 1011–1014 (2003)Google Scholar
  7. 7.
    Qing, A.: Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antennas Propagation 51(6), 1251–1262 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Caorsi, S., Massa, A., Pastorino, M., Raffetto, M., Randazzo, A.: Microwave imaging of cylindrical inhomogeneities based on an analytical forward solver and multiple illuminations. In: IEEE Int. Workshop Imaging Systems Techniques, Stresa, Italy, May 14, pp. 100–105 (2004)Google Scholar
  9. 9.
    Chen, X., Grzegorczyk, T.M., Wu, B.I., Pacheco Jr., J., Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E 70(1), art. no. 016608 (July 2004)Google Scholar
  10. 10.
    Chen, X., O’Neill, K., Barrowes, B.E., Grzegorczyk, T.M., Kong, J.A.: Application of a spheroidal-mode approach and a differential evolution algorithm for inversion of magneto-quasistatic data in UXO discrimination. Inverse Problems 20(6), s27–s40 (2004)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Rao, L., He, R., Xu, G., Guo, X., Yan, W., Wang, L., Yang, S.: Three EIT approaches for static imaging of head. In: Annual Int. Conf. IEEE Engineering Medicine Biology Society, San Francisco, CA, September 1-5, vol. 1, pp. 578–581 (2004)Google Scholar
  12. 12.
    Li, Y., Rao, L.Y., He, R.J., Xu, G.Z., Wu, Q., Yan, W.L., Dong, G.Y., Yang, Q.X.: A novel combination method of electrical impedance-tomography inverse problem for brain imaging. In: 11th IEEE Biennial Conf. Electromagnetic Field Computation, Seoul, Korea, June 6-9, pp. 1848–1851 (2004)Google Scholar
  13. 13.
    Massa, A., Pastorino, M., Randazzo, A.: Reconstruction of two-dimensional buried objects by a differential evolution method. Inverse Problems 20(6), S135–S150 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Qing, A.: Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES). IEEE Trans. Antennas Propagation 52(5), 1223–1229 (2004)CrossRefGoogle Scholar
  15. 15.
    Chen, X., Wu, B.I., Kong, J.A., Grzegorczyk, T.M.: Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 71(4), 46610 (2005)CrossRefGoogle Scholar
  16. 16.
    Shubitidze, F., O’Neill, K., Shamatava, I., Sun, K., Paulsen, K.: Analyzing multi-axis data versus scalar data for UXO discrimination. SPIE, vol. 5794, pp. 336–345 (2005)Google Scholar
  17. 17.
    Shubitidze, F., O’Neill, K., Shamatava, I., Sun, K., Paulsen, K.: Combined differential evolution and surface magnetic charge model algorithm for discrimination of UXO from non-UXO items: simple and general inversions. SPIE, vol. 5794, pp. 346–357 (2005)Google Scholar
  18. 18.
    Chen, X., Grzegorczyk, T.M., Kong, J.A.: Optimization approach to the retrieval of the constitutive parameters of slab of genral bianisotropic medium. Progress Electromagnetics Research 60, 1–18 (2006)CrossRefGoogle Scholar
  19. 19.
    Qing, A.: Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems. IEEE Trans. Geoscience Remote Sensing 44(1), 116–125 (2006)CrossRefGoogle Scholar
  20. 20.
    Agarwal, K., Chen, X.: Application of differential evolution in 2-dimensional electromagnetic inverse problems. In: 2007 IEEE Congress Evolutionary Computation, Singapore, September 25-28, pp. 4305–4312 (2007)Google Scholar
  21. 21.
    Bachorec, T., Jirku, T., Dedkova, J.: New numerical technique for non-destructive testing of the conductive materials. In: Progress Electromagnetics Research Symp., Beijing, China, March 26-30, pp. 976–980 (2007)Google Scholar
  22. 22.
    Pastorino, M.: Stochastic optimization methods applied to microwave imaging: A review. IEEE Trans. Antennas Propagation 55(3), 538–548 (2007)CrossRefGoogle Scholar
  23. 23.
    Qing, A.: A parametric study on differential evolution based on benchmark electromagnetic inverse scattering problem. In: IEEE Congress Evolutionary Computation, Singapore, September 25-28, pp. 1904–1909 (2007)Google Scholar
  24. 24.
    Shubitidze, F., O’Neill, K., Barrowes, B.E., Shamatava, I., Fernandez, J.P., Sun, K., Paulsen, K.K.: Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals. J. Applied Geophysics 61(3-4), 292–303 (2007)CrossRefGoogle Scholar
  25. 25.
    Breard, A., Perrusson, G., Lesselier, D.: Hybrid differential evolution and retrieval of buried spheres in subsoil. IEEE Geoscience Remote Sensing Letters 5(4), 788–792 (2008)CrossRefGoogle Scholar
  26. 26.
    Qing, A.: A study on base vector for differential evolution. In: IEEE Congress Evolutionary Computation, Hong Kong, China, June 1-6, pp. 550–556 (2008)Google Scholar
  27. 27.
    Rekanos, I.T.: Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization. IEEE Trans. Geoscience Remote Sensing 46(7), 1967–1974 (2008)CrossRefGoogle Scholar
  28. 28.
    Semnani, A., Kamyab, M., Rekanos, I.T.: Reconstruction of one-dimensional dielectric scatterers using differential evolution and particle swarm optimization. IEEE Geoscience Remote Sensing Letters 6(4), 671–675 (2009)CrossRefGoogle Scholar
  29. 29.
    Belkebir, K., Bonnard, S., Pezin, F., Sabouroux, P., Saillard, M.: Validation of 2D inverse scattering algorithms from multi-frequency experimental data. J. Electromagnetic Waves Applications 14(12), 1637–1667 (2000)zbMATHCrossRefGoogle Scholar
  30. 30.
    Cheney, M.: The linear sampling method and the MUSIC algorithm. Inverse Problems 17(4), 591–595 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kirsch, A.: The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Problems 18(4), 1025–1040 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Marklein, R., Mayer, K., Hannemann, R., Krylow, T., Balasubramanian, K., Langenberg, K.J., Schmitz, V.: Linear and nonlinear inversion algorithms applied in nondestructive evaluation. Inverse Problems 18(6), 1733–1759 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Colton, D., Haddar, H., Piana, M.: The linear sampling method in inverse electromagnetic scattering theory. Inverse Problems 19(6), S105–S137 (2003)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Dubois, A., Belkebir, K., Saillard, M.: Localization and characterization of two-dimensional targets buried in a cluttered environment. Inverse Problems 20(6), S63–S79 (2004)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Kirsch, A.: The factorization method for Maxwell’s equations. Inverse Problems 20(6), S117–S134 (2004)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Ammari, H., Iakovleva, E., Hyeonbae, K.B.: Reconstruction of a small inclusion in a two-dimensional open waveguide. SIAM J. Applied Mathematics 65(6), 2107–2127 (2005)zbMATHCrossRefGoogle Scholar
  37. 37.
    Cakoni, F.: Recent developments in the qualitative approach to inverse electromagnetic scattering theory. J. Computational Applied Mathematics 204(2), 242–255 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Devaney, A.J.: Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propagation 53(5), 1600–1610 (2005)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Devaney, A.J., Marengo, E.A., Gruber, F.K.: Time-reversal-based imaging and inverse scattering of multiply scattering point targets. J. Acoustical Society America 118(5), 3129–3138 (2005)CrossRefGoogle Scholar
  40. 40.
    Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory: an Introduction. Springer, Berlin (2006)zbMATHGoogle Scholar
  41. 41.
    Catapano, I., Crocco, L., D’Urso, M., Isernia, T.: On the effect of support estimation and of a new model in 2-D inverse scattering problems. IEEE Trans. Antennas Propagation 55(6), 1895–1899 (2007)CrossRefGoogle Scholar
  42. 42.
    Zhong, Y., Chen, X.: MUSIC imaging and electromagnetic inverse scattering of multiple-scattering small anisotropic spheres. IEEE Trans. Antennas Propagation 55(12), 3542–3549 (2007)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Agarwal, K., Chen, X.: Applicability of MUSIC-Type imaging in two-dimensional electromagnetic inverse problems. IEEE Trans. Antennas Propagation 56(10), 3217–3223 (2008)CrossRefGoogle Scholar
  44. 44.
    Lax, M.: Multiple scattering of waves. Reviews of Modern Physics 23, 287–310 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Foldy, L.L.: The multiple scattering of waves: 1. General theory of isotropic scattering by randomly distributed scatterers. Physical Review 67, 107–119 (1945)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Chen, X., Agarwal, K.: MUSIC algorithm for two-dimensional inverse problems with special characteristics of cylinders. IEEE Trans. Antennas Propagation 56(6), 1808–1812 (2008)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Catapano, I., Crocco, L.: An imaging method for concealed targets. IEEE Trans. Geoscience Remote Sensing 47(5), 1301–1309 (2009)CrossRefGoogle Scholar
  48. 48.
    Chen, X., Zhong, Y.: A robust noniterative method for obtaining scattering strengths of multiply scattering point targets. J. Acoustical Society America 122(3), 1325–1327 (2007)CrossRefGoogle Scholar
  49. 49.
    Chiu, C.C., Chen, W.T.: Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm. IEEE Trans. Microwave Theory Techniques 48(11), 1901–1905 (2000)CrossRefGoogle Scholar
  50. 50.
    Qing, A.: Microwave imaging of parallel perfectly conducting cylinders with transverse electric scattering data. J. Electromagnetic Waves Applications 15(5), 665–685 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Peterson, A.F., Ray, S.L., Mittra, R.: Computational Methods for Electromagnetics. IEEE Press, New York (1998)Google Scholar
  52. 52.
    Colton, D.L., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  53. 53.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: a Practical Approach to Global Optimization. Springer, Berlin (2005)Google Scholar
  54. 54.
    Qing, A.: Differential Evolution: Fundamentals and Applications in Electrical Engineering. John Wiley, New York (2009)Google Scholar
  55. 55.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Krishna Agarwal
    • 1
  • Xudong Chen
    • 1
  • Yu Zhong
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingapore

Personalised recommendations