A Literature Survey on Differential Evolution
Chapter
- 1.2k Downloads
Motivations
Eliminating Inconsistencies
It has been observed since 2004 that there are many inconsistent or even false claims prevailing in the community of differential evolution [1]. Two measures have been taken to clarify them. The first is a system level parametric study on differential evolution [1]-[4]. The second is the large scale literature survey mentioned here. It is one of the foundation stones of this book.
Keywords
Differential Evolution Computational Intelligence Evolutionary Computation Soft Computing Differential Evolution Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Qing, A.: Differential Evolution: Fundamentals and Applications in Electrical Engineering. John Wiley, New York (2009)Google Scholar
- 2.Qing, A.: Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 44(1), 116–125 (2006)CrossRefGoogle Scholar
- 3.Qing, A.: A parametric study on differential evolution based on benchmark electromagnetic inverse scattering problem. In: 2007 IEEE Congress Evolutionary Computation, Singapore, September 25-28, pp. 1904–1909 (2007)Google Scholar
- 4.Qing, A.: A study on base vector for differential evolution. In: 2008 IEEE World Congress Computational Intelligence/2008 IEEE Congress Evolutionary Computation, Hong Kong, June 1-6, pp. 550–556 (2008)Google Scholar
- 5.Storn, R.: Modeling and Optimization of PET-Redundancy Assignment for MPEG-Sequences, Technical Report TR-95-018, International Computer Science Institute (May 1995)Google Scholar
- 6.Storn, R.: Differential Evolution Design of an IIR-Filter with Requirements for Magnitude and Group Delay, Technical Report TR-95-026, International Computer Science Institute (June 1995)Google Scholar
- 7.Storn, R., Price, K.V.: Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Insitute (Mar 1995)Google Scholar
- 8.Price, K.V.: Differential evolution: a fast and simple numerical optimizer. In: 1996 Biennial Conf. North American Fuzzy Information Processing Society, Berkeley, CA, June 19-22, pp. 524–527 (1996)Google Scholar
- 9.Storn, R.: Differential evolution design of an IIR-filter. In: 1996 IEEE Int. Conf. Evolutionary Computation, Nagoya, May 20-22, pp. 268–273 (1996)Google Scholar
- 10.Storn, R.: On the usage of differential evolution for function optimization. In: 1996 Biennial Conf. North American Fuzzy Information Processing Society, Berkeley, CA, June 19-22, pp. 519–523 (1996)Google Scholar
- 11.Storn, R.: System Design by Constraint Adaptation and Differential Evolution, Technical Report TR-96-039, International Computer Science Institute (November 1996)Google Scholar
- 12.Storn, R., Price, K.V.: Minimizing the real functions of the ICEC’96 contest by differential evolution. In: 1996 IEEE Int. Conf. Evolutionary Computation, Nagoya, May 20-22, pp. 842–844 (1996)Google Scholar
- 13.Price, K.V.: Differential evolution vs. the functions of the 2nd ICEO. In: 1997 IEEE Int. Conf. Evolutionary Computation, Indianapolis, IN, April 13-16, pp. 153–157 (1997)Google Scholar
- 14.Price, K., Storn, R.: Differential evolution: a simple evolution strategy for fast optimization. Dr. Dobb’s J. 22(4), 18–24, 78 (1997)MathSciNetGoogle Scholar
- 15.Storn, R., Price, K.V.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11(4), 341–359 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Lampinen, J.: A bibliography on differential evolution algorithm, Technical Report, Lappeenranta University of Technology, Department of Information Technology, Laboratory of Information Processing (2001) (last updated on October 14, 2002) available via internet, http://www2.lut.fi/~jlampine/debiblio.htm ( accessed on October 12, 2009)
- 17.Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: a Practical Approach to Global Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
- 18.Feoktistov, V.: Differential Evolution: in Search of Solutions. Springer, Berlin (2006)zbMATHGoogle Scholar
- 19.Chakraborty, U.K. (ed.): Advances in Differential Evolution. Springer, Berlin (2008)zbMATHGoogle Scholar
- 20.Onwubolu, G.C., Davendra, D.: Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization-Studies in Computational Intelligence, vol. 175. Springer, Heidelberg (2009)Google Scholar
- 21.Corn, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill, London (1999)Google Scholar
- 22.Mastorakis, N.E. (ed.): Recent Advances in Circuits and Systems. World Scientific, Singapore (1998)Google Scholar
- 23.Topping, B.H.V. (ed.): Developments in computational mechanics with high performance computing. Civil-Comp Press, Edinburgh (1999)Google Scholar
- 24.Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.): Intelligent Technologies - Theory and Applications. IOS Press, Amsterdam (2002)Google Scholar
- 25.Huijsing, J.H., Steyaert, M., van Roermund, A. (eds.): Analog Circuit Design: Scalable Analog Circuit Design, High Speed D/A Converters, RF Power Amplifiers. Kluwer Academic Publishers, New York (2003)Google Scholar
- 26.Sarker, R., Mohammadian, M., Yao, X. (eds.): Evolutionary Optimization. Kluwer Academic Publishers, New York (2003)Google Scholar
- 27.Johnston, R.L. (ed.): Applications of Evolutionary Computation in Chemistry-Structure & Bonding, vol. 110. Springer, Berlin (2004)Google Scholar
- 28.Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing, vol. 141. Springer, Berlin (2004)zbMATHGoogle Scholar
- 29.Zhong, J.J. (ed.): Biomanufacturing-Advances in Biochemical Engineering/Biotechnology, vol. 87. Springer, Berlin (2004)Google Scholar
- 30.Grigoras, D., Nicolau, A. (eds.): Concurrent information processing and computing. NATO science series, series III, Computer and systems sciences, vol. 195. IOS Press, Amsterdam (May 2005)zbMATHGoogle Scholar
- 31.Hart, W.E., Krasnogor, N., Smith, J.E. (eds.): Recent Advances in Memetic Algorithms. Studies in Fuzziness and Soft Computing, vol. 166. Springer, Berlin (2005)zbMATHGoogle Scholar
- 32.Hoffmann, F., Köppen, M., Klawonn, F., Roy, R. (eds.): Soft Computing: Methodologies and Applications-Advances in Soft Computing, vol. 32. Springer, Berlin (2005)Google Scholar
- 33.Palit, A.K., Popovic, D.: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
- 34.Pieruci, S. (ed.): Computer-Aided Chemical Engineering. Elsevier, Amsterdam (2005)Google Scholar
- 35.Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
- 36.Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.): Applied Soft Computing Technologies: The Challenge of Complexity-Applied Soft Computing, vol. 34. Springer, Berlin (2006)Google Scholar
- 37.Abraham, A., Grosan, C., Ramos, V. (eds.): Stigmergic Optimization-Studies in Computational Intelligence, vol. 31. Springer, Berlin (2006)Google Scholar
- 38.Abraham, A., Grosan, C., Ramos, V. (eds.): Swarm Intelligence in Data Mining. Studies in Computational Intelligence, vol. 34. Springer, Berlin (2006)zbMATHGoogle Scholar
- 39.Alba, E., Marti, R.: Metaheuristic Procedures for Training Neutral Networks-Operations Research/Computer Science Interfaces Series, vol. 36. Springer, Berlin (2006)Google Scholar
- 40.Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling. Spriinger, Berlin (2006)zbMATHGoogle Scholar
- 41.Burke, E.K., Kendall, G. (eds.): Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Berlin (2006)Google Scholar
- 42.Caiti, A., Chapman, N.R., Hermand, J.P., Jesus, S.M. (eds.): Acoustic Sensing Techniques for the Shallow Water Environment: Inversion Methods and Experiments. Springer, Berlin (2006)Google Scholar
- 43.Castro-López, R., Fernández, F.V., Guerra-Vinuesa, O., Rodríguez-Vázquez, Á.: Reuse-Based Methodologies and Tools in the Design of Analog and Mixed-Signal Integrated Circuits. Springer, Berlin (2006)Google Scholar
- 44.Dzemyda, G., Šsltenis, V., Žilinskas, A. (eds.): Stochastic and Global Optimization. Springer, Berlin (2006)Google Scholar
- 45.Jin, Y. (ed.): Multi-Objective Machine Learning. Studies in Computational Intelligence, vol. 16. Springer, Berlin (2006)zbMATHGoogle Scholar
- 46.Li, Z., Halang, W.A., Chen, G.: Integration of Fuzzy Logic and Chaos. Theory. Studies in Fuzziness and Soft Computing, vol. 187. Springer, Berlin (2006)Google Scholar
- 47.Liberti, L., Maculan, N. (eds.): Global Optimization: from Theory to Implementation-Nonconvex Optimization and Its Applications, vol. 84. Springer, Berlin (2006)Google Scholar
- 48.Liu, J., Jin, X., Tsui, K.C.: Autonomy Oriented Computing. Kluwer Academic Publishers, Bonston (2006)Google Scholar
- 49.Nedjah, N., Alba, E., de Macedo Mourelle, L. (eds.): Parallel Evolutionary Computations. Studies in Computational Intelligence, vol. 22. Springer, Berlin (2006)zbMATHGoogle Scholar
- 50.Nedjah, N., de Macedo Mourelle, L. (eds.): Swarm Intelligent Systems. Studies in Computational Intelligence. Springer, Berlin (2006)Google Scholar
- 51.Pintér, J.D. (ed.): Global Optimization: Scientific and Engineering Case Studies-Nonconvex Optimization and Its Applications, vol. 85. Springer, Berlin (2006)Google Scholar
- 52.Steyaert, M., van Roermund, A.H.M., Huijsing, J.H. (eds.): Analog Circuit Design. Springer, Berlin (2006)Google Scholar
- 53.Tiwari, A., Knowles, J., Avineri, E., Dahal, K., Roy, R. (eds.): Applications of Soft Computing: Recent Trends. Springer, Heidelberg (2006)zbMATHGoogle Scholar
- 54.Wiak, S., Krawczyk, A., Trlep, M. (eds.): Computer Engineering in Applied Electromagnetism. Springer, Berlin (2006)Google Scholar
- 55.Zhang, H., Liu, D.: Fuzzy Modeling and Fuzzy Control. Birkhäuser, Boston (2006)zbMATHGoogle Scholar
- 56.Zhang, G.Q., Van Driel, W.D., Fan, X.J. (eds.): Mechanics of Microelectronics. Springer, Berlin (2006)zbMATHGoogle Scholar
- 57.Zomaya, A.Y. (ed.): Handbook of Nature-Inspired and Innovative Computing. Springer, Berlin (2006)Google Scholar
- 58.Zomaya, A.Y.: Parallel computing for bioinformatics and computational biology; models, enabling technologies, and case studies. John Wiley, New York (2006)Google Scholar
- 59.Chahl, J.S., Jain, L.C., Mizutani, A., Sato-Ilic, M. (eds.): Innovations in Intelligent Machines, vol. 1. Springer, Berlin (2007)Google Scholar
- 60.Cios, K.J., Pedrycz, W., Swiniarski, R.W., Kurgan, L.A.: Data Mining: A Knowledge Discovery Approach. Springer, Berlin (2007)zbMATHGoogle Scholar
- 61.Corchado, E., Corchado, J.M., Abraham, A. (eds.): Innovations in Hybrid Intelligent Systems-Advances in Soft Computing, vol. 44. Springer, Berlin (2007)Google Scholar
- 62.Ebashi, S., Ohtsuki, I.: Regulatory Mechanisms of Striated Muscle Contraction-Advances in Experimental Medicine and Biology, vol. 592. Springer, Berlin (2007)CrossRefGoogle Scholar
- 63.Grosan, C., Abraham, A., Ishibuchi, H. (eds.): Hybrid Evolutionary Algorithms. Studies in Computational Intelligence, vol. 75. Springer, Berlin (2007)zbMATHGoogle Scholar
- 64.Jain, L.C., Palade, V., Srinivasan, D.: Advances in Evolutionary Computing for System Design. Studies in Computational Intelligence, vol. 66. Springer, Heidelberg (2007)zbMATHGoogle Scholar
- 65.Kaburlasos, V.G., Ritter, G.X.: Computational Intelligence Based on Lattice Theory. Studies in Computational Intelligence, vol. 67. Springer, Berlin (2007)zbMATHGoogle Scholar
- 66.Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Berlin (2007)zbMATHGoogle Scholar
- 67.Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.): Analysis and Design of Intelligent Systems using Soft Computing Techniques-Advances in Soft Computing, vol. 41. Springer, Berlin (2007)Google Scholar
- 68.Nedjah, N., Abraham, A., de Macedo Mourelle, L. (eds.): Computational Intelligence in Information Assurance and Security. Studies in Computational Intelligence, vol. 57. Springer, Berlin (2007)Google Scholar
- 69.Nedjah, N., dos Santos Coelho, L., de Macedo Mourelle, L.: Mobile Robots: The Evolutionary Approach. Studies in Computational Intelligence, vol. 50. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
- 70.Saad, A., Avineri, E., Dahal, K., Sarfraz, M., Roy, R.: Soft Computing in Industrial Applications: Recent and Emerging Methods and Techniques-Advances in Soft Computing, vol. 39. Springer, Berlin (2007)Google Scholar
- 71.Sobh, T., Elleithy, K., Mahmood, A., Karim, M.: Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications. Springer, Berlin (2007)CrossRefGoogle Scholar
- 72.Suri, J.S., Farag, A.A.: Deformable Models: Biomedical and Clinical Applications. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
- 73.Törn, A., Žilinskas, J.: Models and Algorithms for Global Optimization: Essays Dedicated to Antanas Žilinskas on the Occasion of His 60th Birthday. Springer, Berlin (2007)zbMATHGoogle Scholar
- 74.Valavanis, K.P. (ed.): Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Springer, Berlin (2007)zbMATHGoogle Scholar
- 75.Welcker, K.: Evolutionäre Algorithmen, Teubner (2007)Google Scholar
- 76.Yang, S., Ong, Y.S., Jin, Y.: Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence, vol. 51. Springer, Berlin (2007)zbMATHGoogle Scholar
- 77.Abraham, A., Grosan, C., Pedrycz, W. (eds.): Engineering Evolutionary Intelligent Systems. Studies in Computational Intelligence, vol. 82. Springer, Berlin (2008)zbMATHGoogle Scholar
- 78.Ao, S.I., Riger, B., Chen, S.S. (eds.): Advances in Computational Algorithms and Data Analysis. Lecture Notes Electrical Engineering, vol. 14. Springer, Berlin (2008)Google Scholar
- 79.Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100. Springer, Berlin (2008)zbMATHGoogle Scholar
- 80.Castillo, O., Xu, L., Ao, S.I. (eds.): Trends in Intelligent Systems and Computer Engineering. Lecture Notes Electrical Engineering, vol. 6. Springer, Berlin (2008)zbMATHGoogle Scholar
- 81.Chaturvedi, D.K.: Soft Computing: Techniques and Its Applications in Electrical Engineering. Studies in Computational Intelligence, vol. 103. Springer, Berlin (2008)zbMATHGoogle Scholar
- 82.Cotta, C., Reich, S., Schaefer, R., Ligęza, A. (eds.): Knowledge-Driven Computing. Studies in Computational Intelligence, vol. 102. Springer, Berlin (2008)zbMATHGoogle Scholar
- 83.Cotta, C., Seraux, M., Sörensen, K. (eds.): Adaptive and Multilevel Metaheuristics-Studies in Computational Intelligence, vol. 136. Springer, Heidelberg (2008)Google Scholar
- 84.Cotta, C., van Hemert, J. (eds.): Recent Advances in Evolutionary Computation for Combinatorial Optimization. Studies in Computational Intelligence, vol. 153. Springer, Berlin (2008)zbMATHGoogle Scholar
- 85.Fulcher, J., Jain, L.C. (eds.): Computational Intelligence: a Compendium. Studies in Computational Intelligence, vol. 115. Springer, Berlin (2008)zbMATHGoogle Scholar
- 86.Ghosh, A., Dehuri, S., Ghosh, S. (eds.): Multi-objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence, vol. 98. Springer, Berlin (2008)zbMATHGoogle Scholar
- 87.Grosse, C.U., Ohtsu, M. (eds.): Acoustic Emission Testing. Springer, Berlin (2008)Google Scholar
- 88.Kelemen, A., Abraham, A., Chen, Y. (eds.): Computational Intelligence in Bioinformatics. Studies in Computational Intelligence, vol. 94. Springer, Berlin (2008)Google Scholar
- 89.Kontoghiorghes, E.J., Rustem, B., Winker, P. (eds.): Computational Methods in Financial Engineering: Essays in Honour of Manfred Gilli. Springer, Berlin (2008)zbMATHGoogle Scholar
- 90.Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. Studies in Computational Intelligence, vol. 147. Springer, Berlin (2008)zbMATHGoogle Scholar
- 91.Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.): Nature Inspired Cooperative Strategies for Optimization. Studies in Computational Intelligence, vol. 129. Springer, Berlin (2008)zbMATHGoogle Scholar
- 92.Lee, K.Y., El-Sharkawi, M.A. (eds.): Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. Wiley-IEEE Press, New York (2008)Google Scholar
- 93.Liang, S. (ed.): Advances in Land Remote Sensing: System, Modeling, Inversion and Application. Springer, Berlin (2008)Google Scholar
- 94.Liu, Y., Sun, A., Loh, H.T., Lu, W.F., Lim, E.P. (eds.): Advances of Computational Intelligence in Industrial Systems. Studies in Computational Intelligence, vol. 116. Springer, Berlin (2008)Google Scholar
- 95.Prasad, B. (ed.): Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol. 226. Springer, Berlin (2008)zbMATHGoogle Scholar
- 96.Prasad, B. (ed.): Soft Computing Applications in Business. Studies in Fuzziness and Soft Computing, vol. 230. Springer, Berlin (2008)zbMATHGoogle Scholar
- 97.Prokhorov, D. (ed.): Computational Intelligence in Automotive Applications. Studies in Computational Intelligence, vol. 132. Springer, Berlin (2008)Google Scholar
- 98.Riolo, R., Soule, T., Worzel, B. (eds.): Genetic Programming Theory and Practice, vol. 5. Springer, Berlin (2008)zbMATHGoogle Scholar
- 99.Siarry, P., Michalewicz, Z. (eds.): Advances in Metaheuristics for Hard Optimization. Springer, Berlin (2008)zbMATHGoogle Scholar
- 100.Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.): Applications of Computational Intelligence in Biology. Studies in Computational Intelligence, vol. 122. Springer, Berlin (2008)zbMATHGoogle Scholar
- 101.Smolinski, T.G., Milanova, M.G., A.E.: Computational Intelligence in Biomedicine and Bioinformatics. Studies in Computational Intelligence, vol. 151. Springer, Berlin (2008)CrossRefGoogle Scholar
- 102.Tizhoosh, H.R., Ventresca, M. (eds.): Oppositional Concepts in Computational Intelligence. Studies in Computational Intelligence, vol. 155. Springer, Berlin (2008)zbMATHGoogle Scholar
- 103.Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II. Springer, Berlin (2008)Google Scholar
- 104.Wiak, S., Krawczyk, A., Dolezel, I. (eds.): Intelligent Computer Techniques in Applied Electromagnetics. Studies in Computational Intelligence, vol. 119. Springer, Berlin (2008)Google Scholar
- 105.Xhafa, F., Abraham, A. (eds.): Metaheuristics for Scheduling in Industrial and Manufacturing Applications. Studies in Computational Intelligence, vol. 128. Springer, Berlin (2008)zbMATHGoogle Scholar
- 106.Yang, A., Shan, Y., Bui, L.T.: Success in Evolutionary Computation. Studies in Computational Intelligence, vol. 92. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
- 107.Zhang, J., Sanderson, A.C.: An approximate Gaussian model of differential evolution with spherical fitness function. In: 2007 IEEE Congress Evolutionary Computation, Singapore, september 25-28, pp. 2220–2228 (2007)Google Scholar
- 108.Montgomery, J.: Differential evolution: Difference vectors and movement in solution space. In: IEEE Congress Evolutionary Computation, Trondheim, Norway, May 18-21, pp. 2833–2840 (2009)Google Scholar
- 109.Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: 6th Int. Mendel Conf. Soft Computing, Brno, Czech Republic, June 7-9, pp. 76–83 (2000)Google Scholar
- 110.Sukov, A., Borisov, A.: A study of search technique in differential evolution. In: 7th Int. MENDEL Conf. Soft Computing, Brno, Czech Republic, June 6-8, pp. 144–148 (2001)Google Scholar
- 111.Tomislav, Š.: Improving convergence properties of the differential evolution algorithm. In: 8th Int. MENDEL Conf. Soft Computing, Brno, Czech Republic, June 5-7, pp. 80–86 (2002)Google Scholar
- 112.Ali, M.M.: Differential evolution with preferential crossover. European J. Operational Research 181(3), 1137–1147 (2007)zbMATHCrossRefGoogle Scholar
- 113.Sutton, A.M., Lunacek, M., Whitley, L.D.: Differential evolution and non-separability: using selective pressure to focus search. In: 2007 Genetic Evolutionary Computation Conf., London, UK, July 7-11, pp. 1428–1435 (2007)Google Scholar
- 114.Zaharie, D.: Statistical properties of differential evolution and related random search algorithms. In: 18th Symp. Computational Statistics, Oporto, Portugal, August 24-29, pp. 473–485 (2008)Google Scholar
- 115.Dasguptu, S., Das, S., Biswas, A., Abraham, A.: On stability and convergence of the population-dynamics in differential evolution. AI Communications 22(1), 1–20 (2009)MathSciNetGoogle Scholar
- 116.Zielinski, K., Laur, R.: Variants of differential evolution for multi-objective optimization. In: 2007 IEEE Symp. Computational Intelligence Multicriteria Decision Making, Honolulu, HI, April 1-5, pp. 91–98 (2007)Google Scholar
- 117.Zaharie, D.: A comparative analysis of crossover variants in differential evolution. In: Int. Multiconference Computer Science Information Technology, pp. 171–181 (2007)Google Scholar
- 118.Zaharie, D.: Parameter adaption in differential evolution by controlling the population diversity. In: 4th Int. Workshop Symbolic Numeric Algorithms Scientific Computing, Timi¸ soara, Romania, October 9-12, pp. 385–397 (2002)Google Scholar
- 119.Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: 9th Int. Mendel Conf. Soft Computing, Brno, Czech Republic, June 2003, pp. 41–46 (2003)Google Scholar
- 120.Hajji, O., Brisset, S., Brochet, P.: A stop criterion to accelerate magnetic optimization process using genetic algorithms and finite element analysis. IEEE Trans. Magnetics 39(3 I), 1297–1300 (2003)CrossRefGoogle Scholar
- 121.Zielinski, K., Peters, D., Laur, R.: Run time analysis regarding stopping criteria for differential evolution and particle swarm optimization. In: 1st Int. Conf. Experiments/Process/System Modelling/Simulation/Optimization, Athens, Greece, July 6-9 (2005)Google Scholar
- 122.Zielinski, K., Peters, D., Laur, R.: Stopping criteria for single-objective optimization. In: 3rd Int. Conf. Computational Intelligence Robotics Autonomous Systems, Singapore, December 13-16 (2005)Google Scholar
- 123.Zielinski, K., Laur, R.: Stopping criteria for constrained optimization with particle swarms. In: 2nd Int. Conf. Bioinspired Optimization Methods Applications, Ljubljana, Slovenia, October 9-10, pp. 45–54 (2006)Google Scholar
- 124.Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.D.: Examination of stopping criteria for differential evolution based on a power allocation problem. In: 10th Int. Conf. Optimization Electrical Electronic Equipment, Brasov, Romania, May 18-19, pp. 149–156 (2006)Google Scholar
- 125.Zielinski, K., Laur, R.: Stopping criteria for a constrained single-objective particle swarm optimization algorithm. Informatics (Ljubljana) 31(1), 51–59 (2007)zbMATHGoogle Scholar
- 126.Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
- 127.Michael, C., McGraw, G.: Opportunism and Diversity in Automated Software Test Data Generation, Technical Report RSTR-003-97-13, version 1.3, RST Corporation, Sterling, VA, USA (December 8, 1997)Google Scholar
- 128.Masters, T., Land, W.: A new training algorithm for the general regression neural network. In: 1997 IEEE Int. Conf. Systems Man Cybernetics, Orlando, FL, October 12-15, vol. 3, pp. 1990–1994 (1997)Google Scholar
- 129.Engle, R.F., Manganelli, S.: CAViaR: conditional autoregressive value at risk by regression quantiles, UCSD Economics Discussion Paper 99-20, University of California, San Diego, Department of Economics (October 1999)Google Scholar
- 130.Cafolla, A.A.: A new stochastic optimisation strategy for quantitative analysis of core level photoemission data. Surface Science 402-404, 561–565 (1998)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2010