Skip to main content

Flagellum Structure and Function in Trypanosomes

  • Chapter
  • First Online:
Structures and Organelles in Pathogenic Protists

Part of the book series: Microbiology Monographs ((MICROMONO,volume 17))

Abstract

Trypanosomes are flagellated protozoan parasites responsible for devastating diseases in human and cattle. Recently, they have emerged as new models to study cilia and flagella thanks to powerful reverse genetics approaches coupled to the full sequencing of the genome of several species. In this chapter, we describe the ultra-structural features of the Trypanosoma brucei flagellum, revealing evolutionarily conserved aspects of the axoneme or the basal body and specific elements such as the paraflagellar rod or the flagellum attachment zone. We update the numerous functions demonstrated for this organelle, keeping in mind that most data were obtained from cultured parasites. The next challenges will be the determination of the role of the flagellum in the complex T. brucei life cycle, transiting through tissues of the tsetse fly vector and swimming in the bloodstream of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absalon S, Kohl L, Branche C, Blisnick T, Toutirais G, Rusconi F, Cosson J, Bonhivers M, Robinson D, Bastin P (2007) Basal body positioning is controlled by flagellum formation in Trypanosoma brucei. PLoS ONE 2:e437

    Article  PubMed  Google Scholar 

  • Absalon S, Blisnick T, Bonhivers M, Kohl L, Cayet N, Toutirais G, Buisson J, Robinson D, Bastin P (2008a) Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. J Cell Sci 121:3704–3716

    Article  PubMed  CAS  Google Scholar 

  • Absalon S, Blisnick T, Kohl L, Toutirais G, Dore G, Julkowska D, Tavenet A, Bastin P (2008b) Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 19:929–944

    Article  PubMed  CAS  Google Scholar 

  • Adhiambo C, Forney JD, Asai DJ, LeBowitz JH (2005) The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Mol Biochem Parasitol 143:216–225

    Article  PubMed  CAS  Google Scholar 

  • Adhiambo C, Blisnick T, Toutirais G, Delannoy E, Bastin P (2009) A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J Cell Sci 122:834–841

    Article  PubMed  CAS  Google Scholar 

  • Baron DM, Kabututu ZP, Hill KL (2007a) Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci 120:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Baron DM, Ralston KS, Kabututu ZP, Hill KL (2007b) Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. J Cell Sci 120:478–491

    Article  PubMed  CAS  Google Scholar 

  • Bastin P, Matthews KR, Gull K (1996) The paraflagellar rod of kinetoplastida: solved and unsolved questions. Parasitol Today 12:302–307

    Article  PubMed  CAS  Google Scholar 

  • Bastin P, Sherwin T, Gull K (1998) Paraflagellar rod is vital for trypanosome motility. Nature 391:548

    Article  PubMed  CAS  Google Scholar 

  • Bastin P, MacRae TH, Francis SB, Matthews KR, Gull K (1999a) Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes. Mol Cell Biol 19:8191–8200

    PubMed  CAS  Google Scholar 

  • Bastin P, Pullen TJ, Sherwin T, Gull K (1999b) Protein transport and flagellum assembly dynamics revealed by analysis of the paralysed trypanosome mutant snl-1. J Cell Sci 112:3769–3777

    PubMed  CAS  Google Scholar 

  • Bates PA (2008) Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 11:340–344

    Article  PubMed  Google Scholar 

  • Bonhivers M, Landrein N, Decossas M, Robinson DR (2008a) A monoclonal antibody marker for the exclusion-zone filaments of Trypanosoma brucei. Parasit Vectors 1:21

    Article  PubMed  Google Scholar 

  • Bonhivers M, Nowacki S, Landrein N, Robinson DR (2008b) Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol 6:e105

    Article  PubMed  Google Scholar 

  • Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, Bastin P (2006) Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 119:3443–3455

    Article  PubMed  CAS  Google Scholar 

  • Briggs LJ, McKean PG, Baines A, Moreira-Leite F, Davidge J, Vaughan S, Gull K (2004) The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. J Cell Sci 117:1641–1651

    Article  PubMed  CAS  Google Scholar 

  • Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Hardin C, Gaertig J (1999) Rotokinesis, a novel phenomenon of cell locomotion-assisted cytokinesis in the ciliate Tetrahymena thermophila. Cell Biol Int 23:841–848

    Article  PubMed  CAS  Google Scholar 

  • Cachon J, Cachon M, Cosson MP, Cosson J (1988) The paraflagellar rod: a structure in search of a function. Biol Cell 63:169–181

    Article  Google Scholar 

  • Cavalier-Smith T (1974) Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci 16:529–556

    PubMed  CAS  Google Scholar 

  • Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008

    Article  PubMed  CAS  Google Scholar 

  • Cooper R, de Jesus AR, Cross GA (1993) Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion. J Cell Biol 122:149–156

    Article  PubMed  CAS  Google Scholar 

  • Cross GA (1975) Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71:393–417

    Article  PubMed  CAS  Google Scholar 

  • Davidge JA, Chambers E, Dickinson HA, Towers K, Ginger ML, McKean PG, Gull K (2006) Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci 119:3935–3943

    Article  PubMed  CAS  Google Scholar 

  • Dawe HR, Farr H, Portman N, Shaw MK, Gull K (2005) The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis. J Cell Sci 118:5421–5430

    Article  PubMed  CAS  Google Scholar 

  • Dawe HR, Shaw MK, Farr H, Gull K (2007) The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules. BMC Biol 5:33

    Article  PubMed  Google Scholar 

  • Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL (2001) Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 11:1586–1590

    Article  PubMed  CAS  Google Scholar 

  • Deflorin J, Rudolf M, Seebeck T (1994) The major components of the paraflagellar rod of Trypanosoma brucei are two similar, but distinct proteins which are encoded by two different gene loci. J Biol Chem 269:28745–28751

    PubMed  CAS  Google Scholar 

  • Dilbeck V, Berberof M, Van Cauwenberge A, Alexandre H, Pays E (1999) Characterization of a coiled coil protein present in the basal body of Trypanosoma brucei. J Cell Sci 112(Pt 24):4687–4694

    PubMed  CAS  Google Scholar 

  • Engstler M, Thilo L, Weise F, Grunfelder CG, Schwarz H, Boshart M, Overath P (2004) Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci 117:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, Overath P (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131:505–515

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Attias M, Souto-Padron T, De Souza W (1986) Further studies on the organization of the paraxial rod of Trypanosomatids. J Protozool 33:552–557

    Google Scholar 

  • Farr H, Gull K (2009) Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes. Cell Motil Cytoskeleton 66:24–35

    Article  PubMed  CAS  Google Scholar 

  • Field MC, Natesan SK, Gabernet-Castello C, Koumandou VL (2007) Intracellular trafficking in the trypanosomatids. Traffic 8:629–639

    Article  PubMed  CAS  Google Scholar 

  • Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893

    Article  PubMed  CAS  Google Scholar 

  • Gadelha C, Wickstead B, de Souza W, Gull K, Cunha-e-Silva N (2005) Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa. Eukaryot Cell 4:516–525

    Article  PubMed  CAS  Google Scholar 

  • Gadelha C, Wickstead B, Gull K (2007) Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton 64:629–643

    Article  PubMed  Google Scholar 

  • Gallo JM, Precigout E, Schrevel J (1988) Subcellular sequestration of an antigenically unique beta-tubulin. Cell Motil Cytoskeleton 9:175–183

    Article  PubMed  CAS  Google Scholar 

  • Grasse PP (1961) La reproduction par induction du blepharoplaste et du flagelle de Trypanosoma equiperdum. C R Acad Sci 252:3917–3921

    Google Scholar 

  • Hao L, Scholey JM (2009) Intraflagellar transport at a glance. J Cell Sci 122:889–892

    Article  PubMed  CAS  Google Scholar 

  • He CY, Pypaert M, Warren G (2005) Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310:1196–1198

    Article  PubMed  CAS  Google Scholar 

  • Hill KL (2003) Biology and mechanism of trypanosome cell motility. Eukaryot Cell 2:200–208

    Article  PubMed  CAS  Google Scholar 

  • Hutchings NR, Donelson JE, Hill KL (2002) Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes. J Cell Biol 156:867–877

    Article  PubMed  CAS  Google Scholar 

  • Julkowska D, Bastin P (2009) Tools for analysing intraflagellar transport in trypanosomes. Meth Cell Biol 93:59–80

    Article  CAS  Google Scholar 

  • Kohl L, Bastin P (2005) The flagellum of Trypanosomes. In: International review of cytology, Vol 244. Academic Press, New york, pp 227–285

    Google Scholar 

  • Kohl L, Gull K (1998) Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 93:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kohl L, Robinson D, Bastin P (2003) Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J 22:5336–5346

    Article  PubMed  CAS  Google Scholar 

  • Kollien AH, Schmidt J, Schaub GA (1998) Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop 70:127–141

    Article  PubMed  CAS  Google Scholar 

  • Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90:5519–5523

    Article  PubMed  CAS  Google Scholar 

  • Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, Gull K (2009) Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci 122:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • LaCount DJ, Barrett B, Donelson JE (2002) Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J Biol Chem 277:17580–17588

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wang CC (2008) KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei. Eukaryot Cell 7:1941–1950

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Liu Y, Motyka SA, Agbo EE, Englund PT (2005) Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol 21:363–369

    Article  PubMed  CAS  Google Scholar 

  • Maga JA, LeBowitz JH (1999) Unravelling the kinetoplastid paraflagellar rod. Trends Cell Biol 9:409–413

    Article  PubMed  CAS  Google Scholar 

  • Maga JA, Sherwin T, Francis S, Gull K, LeBowitz JH (1999) Genetic dissection of the Leishmania paraflagellar rod, a unique flagellar cytoskeleton structure. J Cell Sci 112:2753–2763

    PubMed  CAS  Google Scholar 

  • Moreira-Leite FF, Sherwin T, Kohl L, Gull K (2001) A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 294:610–612

    Article  PubMed  CAS  Google Scholar 

  • Morgan GW, Denny PW, Vaughan S, Goulding D, Jeffries TR, Smith DF, Gull K, Field MC (2005) An evolutionarily conserved coiled-coil protein implicated in polycystic kidney disease is involved in basal body duplication and flagellar biogenesis in Trypanosoma brucei. Mol Cell Biol 25:3774–3783

    Article  PubMed  CAS  Google Scholar 

  • Natesan SK, Peacock L, Matthews K, Gibson W, Field MC (2007) Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell 6:2029–2037

    Article  PubMed  CAS  Google Scholar 

  • Ngô HM, Bouck GB (1998) Heterogeneity and a coiled coil prediction of trypanosomatid-like flagellar rod proteins in Euglena. J Eukaryot Microbiol 45:323–333

    Article  PubMed  Google Scholar 

  • Ogbadoyi EO, Robinson DR, Gull K (2003) A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 14:1769–1779

    Article  PubMed  CAS  Google Scholar 

  • Overath P, Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53:735–744

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113

    Article  PubMed  CAS  Google Scholar 

  • Peacock L, Ferris V, Bailey M, Gibson W (2007) Dynamics of infection and competition between two strains of Trypanosoma brucei in the tsetse fly observed using fluorescent markers. Kinetoplastid Biol Dis 6:4

    Article  PubMed  Google Scholar 

  • Pedersen LB, Geimer S, Rosenbaum JL (2006) Dissecting the molecular mechanisms of intraflagellar transport in chlamydomonas. Curr Biol 16:450–459

    Article  PubMed  CAS  Google Scholar 

  • Portman N, Lacomble S, Thomas B, McKean PG, Gull K (2009) Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 284:5610–5619

    Article  PubMed  CAS  Google Scholar 

  • Pullen TJ, Ginger ML, Gaskell SJ, Gull K (2004) Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell 15:3257–3265

    Article  PubMed  CAS  Google Scholar 

  • Ralston KS, Hill KL (2006) Trypanin, a component of the flagellar Dynein regulatory complex, is essential in bloodstream form African trypanosomes. PLoS Pathog 2:e101

    Article  PubMed  Google Scholar 

  • Ralston KS, Lerner AG, Diener DR, Hill KL (2006) Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell 5:696–711

    Article  PubMed  CAS  Google Scholar 

  • Ralston KS, Kabututu ZP, Melehani JH, Oberholzer M, Hill KL (2009) The Trypanosoma brucei flagellum: moving parasites in new directions. Annu Rev Microbiol 63:335–362

    Article  PubMed  CAS  Google Scholar 

  • Ridgley E, Webster P, Patton C, Ruben L (2000) Calmodulin-binding properties of the paraflagellar rod complex from Trypanosoma brucei. Mol Biochem Parasitol 109:195–201

    Article  PubMed  CAS  Google Scholar 

  • Robinson DR, Gull K (1991) Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352:731–733

    Article  PubMed  CAS  Google Scholar 

  • Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K (1995) Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 128:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Rodgers MJ, Albanesi JP, Phillips MA (2007) Phosphatidylinositol 4-kinase III-beta is required for Golgi maintenance and cytokinesis in Trypanosoma brucei. Eukaryot Cell 6:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Rotureau B, Morales MA, Bastin P, Spath GF (2009) The flagellum-MAP kinase connection in Trypanosomatids: a key sensory role in parasite signaling and development? Cell Microbiol 11(5):710–718

    Article  PubMed  CAS  Google Scholar 

  • Russell DG, Newsam RJ, Palmer GC, Gull K (1983) Structural and biochemical characterisation of the paraflagellar rod of Crithidia fasciculata. Eur J Cell Biol 30:137–143

    PubMed  CAS  Google Scholar 

  • Santrich C, Moore L, Sherwin T, Bastin P, Brokaw C, Gull K, LeBowitz JH (1997) A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Mol Biochem Parasitol 90:95–109

    Article  PubMed  CAS  Google Scholar 

  • Schlaeppi K, Deflorin J, Seebeck T (1989) The major component of the paraflagellar rod of Trypanosoma brucei is a helical protein that is encoded by two identical, tandemly linked genes. J Cell Biol 109:1695–1709

    Article  PubMed  CAS  Google Scholar 

  • Scott V, Sherwin T, Gull K (1997) gamma-tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres. J Cell Sci 110(Pt 2):157–168

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A, Kumar P, Morris JC, Salisbury JL, Wang CC, Nakhasi HL (2007) Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell 18:3290–3301

    Article  PubMed  CAS  Google Scholar 

  • Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325(5944):1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Peacock L, Gluenz E, Gull K, Gibson W, Carrington M (2008) Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist 159:137–151

    Article  PubMed  Google Scholar 

  • Sherwin T, Gull K (1989) The cell division cycle of Trypanosoma brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci 323:573–588

    Article  PubMed  CAS  Google Scholar 

  • Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633

    Article  PubMed  CAS  Google Scholar 

  • Stephan A, Vaughan S, Shaw MK, Gull K, McKean PG (2007) An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic 8:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Tetley L, Vickerman K (1985) Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat. J Cell Sci 74:1–19

    PubMed  CAS  Google Scholar 

  • Tuxworth RI, Cheetham JL, Machesky LM, Spiegelmann GB, Weeks G, Insall RH (1997) Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. J Cell Biol 138:605–614

    Article  PubMed  CAS  Google Scholar 

  • Vaughan S, Kohl L, Ngai I, Wheeler RJ, Gull K (2008) A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist 159:127–136

    Article  PubMed  CAS  Google Scholar 

  • Vickerman K (1969) On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5:163–193

    PubMed  CAS  Google Scholar 

  • Vickerman K (1973) The mode of attachment of Trypanosoma vivax in the proboscis of the tsetse fly Glossina fuscipes: an ultrastructural study of the epimastigote stage of the trypanosome. J Protozool 20:394–404

    PubMed  CAS  Google Scholar 

  • Vickerman K (1985) Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 41:105–114

    PubMed  CAS  Google Scholar 

  • Vickerman K, Luckins AG (1969) Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature 224:1125–1126

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Lindsay ME, Roy Chowdhury A, Robinson DR, Englund PT (2008) p166, a link between the trypanosome mitochondrial DNA and flagellum, mediates genome segregation. EMBO J 27:143–154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is funded by the Institut Pasteur and the CNRS. We thank the Plateforme de Microscopie Ultrastructurale for providing access to their equipment. J.B. is funded by an MNRT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bastin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buisson, J., Bastin, P. (2010). Flagellum Structure and Function in Trypanosomes. In: de Souza, W. (eds) Structures and Organelles in Pathogenic Protists. Microbiology Monographs, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12863-9_3

Download citation

Publish with us

Policies and ethics