Skip to main content

Subpellicular Microtubules in Apicomplexa and Trypanosomatids

  • Chapter
  • First Online:
Structures and Organelles in Pathogenic Protists

Part of the book series: Microbiology Monographs ((MICROMONO,volume 17))

Abstract

The cytoskeleton plays a fundamental role in various processes such as the establishment of cell shape, cell locomotion, and the intracellular motility of various structures found in eukaryotic cells. Microtubules are among the most conspicuous structures in the cytoskeleton. They can be found free in the cytoplasm, forming the mitotic spindle or assembled in various structures. A special type of microtubule arrangement is found in some protozoa, whereby they are organized as a single layer located immediately below the plasma membrane, constituting what is generally referred to as subpellicular microtubules. This special array of microtubules is found in members of the Kinetoplastida family and in the Apicomplexa phylum. Here, we review basic aspects of subpellicular microtubules, emphasizing their visualization as a whole network, their structural organization, their heterogeneity as analyzed using an immunocytochemical approach, some of their biochemical properties, and their sensitivity to drugs, as well as their functional role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affolter M, Hemphill A, Roditi I, Muller N, Seebeck T (1994) The repetitive microtubule-associated proteins MARP-1 and MARP-2 of Trypanosoma brucei. J Struct Biol 112:241–251

    Article  PubMed  CAS  Google Scholar 

  • Angelopoulos E (1970) Pellicular microtubules in the family Trypanosomatidae. J Protozool 17:39–51

    PubMed  CAS  Google Scholar 

  • Attias M, De Souza W (in press) A review of the Apicomplexa cytoskeleton. Trends Mol Cell Biol

    Google Scholar 

  • Attias M, Bezerra JL, Oliveira DP, Souza W (1987) Ultrastructure of Phytomonas Staheli in diseased coconut (Cocos nucifera) and oil palm (Elaeis Guineensis). J Submicrosc Cytol 19:93–100

    Google Scholar 

  • Attias M, Vommaro RC, Souza W (1996) Computer aided three-dimensional reconstruction of the free-living protozoan Bodo sp (Kinetoplastida Bodonida). Cell Struct Funct 21:297–306

    Article  PubMed  CAS  Google Scholar 

  • Baines A, Gull K (2008) WCB is a C2 domain protein defining the plasma membrane-sub-pellicular microtubule corset of kinetoplastid parasites. Protist 159:115–125

    Article  PubMed  CAS  Google Scholar 

  • Balaban N, Goldman R (1992) Isolation and characterization of a unique 15 kilodalton trypanosome subpellicular microtubule-associated protein. Cell Motil Cytoskeleton 21:138–146

    Article  PubMed  CAS  Google Scholar 

  • Balaban N, Waithaka HK, Njogu AR, Goldman R (1989) Isolation of a subpellicular microtubule protein from Trypanosoma brucei that mediates crosslinking of microtubules. Cell Motil Cytoskeleton 14:393–400

    Article  PubMed  CAS  Google Scholar 

  • Baum SG, Wittner M, Nadler JP, Horwitz SB, Dennis JE, Schiff PB, Tanowitz MB (1981) Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proc Natl Acad Sci USA 78:4571–4575

    Article  PubMed  CAS  Google Scholar 

  • Baum J, Papenfuss AT, Baum B, Speed TP, Cowman AF (2006) Regulation of apicomplexan actin-based motility. Nat Rev Microbiol 4:621–628

    Article  PubMed  CAS  Google Scholar 

  • Bogitsh BJ, Ribeiro-Rodrigues R, Carter (1995) In vitro effect of mannan and cytochalasin B on the uptake of horseradish peroxidase and 14-sucrose by Trypanosoma cruzi epimastigotes. J Parasitol 81:144–148

    Article  PubMed  CAS  Google Scholar 

  • Bogitsh BJ, Middleton OL, Ribeiro-Rodrigues R (1999) Effects of the antitubulin drug trifluralin on the proliferation and metacyclogenesis of Trypanosoma cruzi epimastigotes. Parasitol Res 85:475–480

    Article  PubMed  CAS  Google Scholar 

  • Bordier C, Garavito RM, Armbruster B (1982) Biochemical and structural analyses of microtubules in the pellicular membrane of Leishmania tropica. J Protozool 29:560–565

    PubMed  CAS  Google Scholar 

  • Bridges DJ, Pitt AR, Hanrahan O, Brennan K, Voorheis HP, Herzyk P, de Koning HP, Burchemore RJS (2008) Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 8:83–99

    Article  PubMed  CAS  Google Scholar 

  • Bringmann G, Holz J (1953) Toxoplasma gondii in the electronmicroscopical picture. Z Hyg Infektionskr 137:186–191

    Article  PubMed  CAS  Google Scholar 

  • Caldas LA, DeSouza W, Attias M (2007) Calcium ionophore-induced egress of Toxoplasma gondii shortly after host cell invasion. Vet Parasitol 147:210–220

    Article  PubMed  CAS  Google Scholar 

  • Caldas LA, de Souza W, Attias M (2010) Microscopic analysis of calcium ionophore activated egress of Toxoplasma gondii from the host cell. Vet Parasitol 167:8–18

    Article  PubMed  CAS  Google Scholar 

  • Campanati L, Troester H, Monteiro-Leal LH, Spring H, Trendelenburg MF, De Souza W (2003) Tubulin diversity in trophozoites of Giardia lamblia. Histochem Cell Biol 119:323–331

    PubMed  CAS  Google Scholar 

  • Carey KL, Westwood NJ, Mitchison TJ, Ward GE (2004) A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci USA 101:7433–7438

    Article  PubMed  CAS  Google Scholar 

  • Carruthers VB, Sibley LD (1997) Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73:114–123

    PubMed  CAS  Google Scholar 

  • Casanova M, Crobu L, Blaineau C, Burgeois N, Bastien P, Pagès M (2009) Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids. Mol Microbiol 71:1353–1370

    Article  PubMed  CAS  Google Scholar 

  • Chan MM, Fong D (1994) Plant microtubule inhibitors against trypanosomatids. Parasitol Today 10:448–451

    Article  PubMed  CAS  Google Scholar 

  • Chan MM, Triemer RE, Fong D (1991) Effect of the anti-microtubule drug oryzalin on growth and differentiation of the parasitic protozoan Leishmania mexicana. Differentiation 46:15–21

    Article  PubMed  CAS  Google Scholar 

  • Cintra WM, De Souza W (1985a) Distribution of intramembranous particles and filipin-sterol complexes in the cell membranes of Toxoplasma gondii. Eur J Cell Biol 37:63–69

    PubMed  CAS  Google Scholar 

  • Cintra WM, De Souza W (1985b) Immunocytochemical localization of cytoskeletal proteins and electron microscopy of detergent extracted tachyzoites of Toxoplasma gondii. J Submicroscop Cytol 17:503–508

    CAS  Google Scholar 

  • Corrêa JR, Atella GC, Batista MM, Soares MJ (2008) Transferrin uptake in Trypanosoma cruzi is impaired by interference on cytostome-associated cytoskeleton elements and stability of membrane cholesterol but not by obstruction of chlatrin-dependent endocytosis. Exp Parasitol 119:58–66

    Article  PubMed  CAS  Google Scholar 

  • Cyrklaff M, Kudryashev M, Leis A, Leonard K, Baumeister W, Menard R, Meissner M, Frischknecht F (2007) Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites. J Exp Med 204:1281–1287

    Article  PubMed  CAS  Google Scholar 

  • Dantas AP, Barbosa HS, De Castro SL (2003) Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi. J Submicroscop Cytol Pathol 35:287–294

    CAS  Google Scholar 

  • De Melo LD, Sant’Anna C, Reis SA, De Souza W, Cunha e Silva NL (2008) Evolutionary conservation of actin-binding proteins in Trypanosoma cruzi and unusual sub-cellular localization of the actin homologue. Parasitology 135:955–965

    Article  PubMed  CAS  Google Scholar 

  • De Souza W (1972) Mise en évidence et structure du système microtubulaire de Toxoplasma gondii. C R Acad Sci 275:2899–2901

    Google Scholar 

  • De Souza W (1974) Fine structure of the conoid of Toxoplasma gondii. Rev Inst Med Trop São Paulo 16:32–38

    PubMed  Google Scholar 

  • De Souza W (1976) Associations membrane-microtubules chez Trypanosoma cruzi. J Microscop Biol Cell 25:189–190

    Google Scholar 

  • De Souza W (2006) Secretory organelles of pathogenic protozoa. An Acad Bras Cienc 78:271–291

    Article  PubMed  Google Scholar 

  • De Souza W (2008) Electron microscopy of trypanosomes. A historical view. Mem Inst Oswaldo Cruz 103:313–325

    Article  PubMed  Google Scholar 

  • De Souza W, Benchimol M (1984) High voltage electron microscopy of critical point dried trypanosomatids. J Submicroscop Cytol 16:237–242

    Google Scholar 

  • De Souza W, Cunha e Silva NL (2003) Cell fractionation of parasitic protozoa – a review. Mem Inst Oswaldo Cruz 98:151–170

    Article  Google Scholar 

  • Dobrowolski JM, Sibley LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84:933–939

    Article  PubMed  CAS  Google Scholar 

  • Dobrowolski JM, Carruthers VB, Sibley LD (1997a) Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 26:163–173

    Article  PubMed  CAS  Google Scholar 

  • Dobrowolski JM, Niesman IR, Sibley LD (1997b) Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motil Cytoskeleton 37:253–262

    Article  PubMed  CAS  Google Scholar 

  • Dubey JP, Lindsay DS, Speer CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11:267–299

    PubMed  CAS  Google Scholar 

  • Dubremetz JF, Torpier G (1978) Freeze-fracture study of the pellicle of an Eimerian sporozoite (Protozoa, Coccidia). J Ultrastruct Res 62:94–109

    Article  PubMed  CAS  Google Scholar 

  • Dwyer DM (1980) Isolation and partial characterization of surface membranes from Leishmania donovani promastigotes. J Protozool 27:176–182

    PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005a) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005b) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  PubMed  CAS  Google Scholar 

  • Emmel L, Jakob A, Golz H (1942) Elektronenoptische Untersuchungen an Malaria-Sporozoite und Beobachtungen an Kulturformen von Leishmania donovani. Deutsch Tropenmed Z 46:344–348 (in Dubremetz and Fergusonm (2009))

    Google Scholar 

  • Field MC, Carrington M (2004) Intracellular membrane transport systems in Trypanosoma brucei. Traffic 5:905–913

    Article  PubMed  CAS  Google Scholar 

  • Field SJ, Pinder JC, Clough B, Dluzewski AR, Wilson RJ, Gratzer WB (1993) Actin in the merozoite of the malaria parasite, Plasmodium falciparum. Cell Motil Cytoskeleton 25:43–48

    Article  PubMed  CAS  Google Scholar 

  • Filho SA, de Almeida ER, Gander ES (1978) The influence of hydroxyurea and colchicine on growth and morphology of Trypanosoma cruzi. Acta Trop 35:229–237

    PubMed  CAS  Google Scholar 

  • Forney JR, Vaughan DK, Yang S, Healey MC (1998) Actin-dependent motility in Cryptosporidium parvum sporozoites. J Parasitol 84:908–923

    Article  PubMed  CAS  Google Scholar 

  • Fowler RE, Smith AM, Whitehorn J, Williams IT, Bannister LH, Mitchell GH (2001) Microtubule associated motor proteins of Plasmodium falciparum merozoites. Mol Biochem Parasitol 117:187–200

    Article  PubMed  CAS  Google Scholar 

  • Gallo JM, Precigout E (1988) Tubulin expression in trypanosomes. Biol Cell 64:137–143

    Article  PubMed  CAS  Google Scholar 

  • Garnham PC, Baker JR, Bird RG (1962) Fine structure of cystic form of Toxoplasma gondii. Br Med J 1:83–84

    Article  PubMed  CAS  Google Scholar 

  • Grellier P, Sinou V, Garreau-de-Loubresse N, Bylèn E, Boulard Y, Schrével J (1999) Selective and reversible effects of vinca alkaloids on Trypanosoma cruzi epimastigote forms: blockage of cytokinesis without inhibition of the organelle duplication. Cell Motil Cytoskeleton 42:36–47

    Article  PubMed  CAS  Google Scholar 

  • Gull K (1999) The cytoskeleton of Trypanosomatid Parasites. Annu Rev Microbiol 53:629–635

    Article  PubMed  CAS  Google Scholar 

  • Gustafson PV, Agar HD, Cramer DI (1954) An electron microscope study of Toxoplasma. Am J Trop Med Hyg 3:1008–1021

    PubMed  CAS  Google Scholar 

  • Håkansson S, Morisaki H, Heuser J, Sibley LD (1999) Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10:3539–3547

    PubMed  Google Scholar 

  • Havens CG, Bryant N, Asher L, Lamocreaux L, Perfetto S, Brendle JJ, Werbovetz KA (2000) Cellular effects of leishmanial tubulin inhibitors on L. donovani. Mol Biochem Parasitol 110:223–236

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR, McIntosh JR (1980) Visualization of the structural polarity of microtubules. Nature 286:517–519

    Article  PubMed  CAS  Google Scholar 

  • Hemphill A, Affolter M, Seebeck T (1992) A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei. J Cell Biol 117:95–103

    Article  PubMed  CAS  Google Scholar 

  • Hou W-Y, Pimenta PFP, Ru-Long S, Pinto da Silva P (1992) Stereo views and immunogold labeling of the pellicular microtubules at the inner surface of the plasma membrane of Leishmania as revealed by fracture-flip. J Histochem Cytochem 40:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Hu K, Roos DS, Murray JM (2002) A novel polymer of tubulin forms the conoid of Toxoplasma gondii. J Cell Biol 156:1039–1050

    Article  PubMed  CAS  Google Scholar 

  • Hu K, Johnson J, Florens L, Fraunholz M, Suravajjala S, DiLullo C, Yates J, Roos DS, Murray JM (2006) Cytoskeletal components of an invasion machine–the apical complex of Toxoplasma gondii. PLoS Pathog 2:e13

    Article  PubMed  CAS  Google Scholar 

  • Hunt RC, Ellar DJ (1974) Isolation of the plasma membrane of a trypanosomatid flagellate: general characterisation and lipid composition. Biochim Biophys Acta 339:173–189

    Article  CAS  Google Scholar 

  • Jones TC, Yeh S, Hirsch JG (1972) The interaction between Toxoplasma gondii and mammalian cells. I. Mechanism of entry and intracellular fate of the parasite. J Exp Med 136:1157–1172

    Article  PubMed  CAS  Google Scholar 

  • Kapoor P, Sachdeva M, Madhubala R (1999) Effect of the microtubule stabilising agent taxol on leishmanial protozoan parasites in vitro. FEMS Microbiol Lett 176:429–435

    Article  PubMed  CAS  Google Scholar 

  • Khater EI, Sinden RE, Dessens JT (2004) A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites. J Cell Biol 167:425–432

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa Y, Gueft B (1964) Toxoplasma cysts in the human heart, an electron microscopic study. J Parasitol 50:217–225

    Article  PubMed  CAS  Google Scholar 

  • Kishi F, Yoshida T, Also S (1996) Location of NRAMP1 molecule on the plasma membrane and its association with microtubules. Mol Immunol 33:1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Kohl L, Gull K (1998) Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 93:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kratzerová L, Draberová E, Juliano C, Viklicky V, Fiori PL, Cappuccinelli P, Dráber P (2001) Cell cycle-dependent changes in localization of a 210-kDa microtubule-interacting protein in Leishmania. Exp Cell Res 266:270–278

    Article  PubMed  CAS  Google Scholar 

  • Lemgruber L, Kloetzel JA, Souza W, Vommaro RC (2009) Toxoplasma gondii: further studies on the subpellicular network. Mem Inst Oswaldo Cruz 104:706–709

    Article  PubMed  Google Scholar 

  • Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873

    Article  PubMed  CAS  Google Scholar 

  • Libusova L, Sulimenko T, Sulimenko V, Hozák P, Dráber P (2004) Gamma-Tubulin in Leishmania: cell cycle-dependent changes in subcellular localization and heterogeneity of its isoforms. Exp Cell Res 295:375–386

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Li C, Ganesan L, Oak J, Tsai S, Sept D, Morrissete NS (2007) Mutations in α-tubulin confer Dinitroaniline resistance at a cost to microtubule function. Mol Biol Cell 18:4711–4720

    Article  PubMed  CAS  Google Scholar 

  • Mann T, Beckers C (2001) Characterization of the sub-pellicular network, a filamentous membrane skeletal components in the parasite Toxoplasma gondii. Mol Biochem Parasitol 115:257–268

    Article  PubMed  CAS  Google Scholar 

  • McLaren DJ, Paget GE (1968) A fine structural study on the merozoite of Eimeria tenella with special reference to the conoid apparatus. Parasitology 58:561–571

    Article  PubMed  CAS  Google Scholar 

  • Meissner M, Schluter D, Soldati D (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298:837–840

    Article  PubMed  CAS  Google Scholar 

  • Meyer H, Andrade Mendonça I (1955) Electron microscopy observations of Toxoplasma Nicolle et Manceaux grown in tissue cultures (first note). Parasitology 45:449–451

    Article  PubMed  CAS  Google Scholar 

  • Meyer H, De Souza W (1976) Electron microscopic study of Trypanosoma cruzi periplast in tissue cultures. I. Number and arrangement of the peripheral microtubules in the various forms of the parasite's life cycle. J Protozool 23:385–390

    PubMed  CAS  Google Scholar 

  • Meyer H, Porter KR (1954) A study of Trypanosoma cruzi with the electron microscope. Parasitology 44:16–23

    Article  PubMed  CAS  Google Scholar 

  • Mizuhira V, Futeasaku Y (1972) New fixation for biological membranes using tannic acid. Acta Histochem Cytochem 5:233–236

    Article  Google Scholar 

  • Mondragon R, Frixione E (1996) Ca(2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. J Eukaryot Microbiol 43:120–127

    Article  PubMed  CAS  Google Scholar 

  • Monteiro VG, de Melo EJ, Attias M, de Souza W (2001) Morphological changes during conoid extrusion in Toxoplasma gondii tachyzoites treated with calcium ionophore. J Struct Biol 136:181–189

    Article  PubMed  CAS  Google Scholar 

  • Morrissette NS (1995) The apical cytoskeleton of T gondii. PhD thesis, University of Pennsylvania, Philadelphia, PA, 191 pp

    Google Scholar 

  • Morrissete NS, Murray JM, Roos DR (1997) Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 110:35–42

    Google Scholar 

  • Morrissete NS, Mitra A, Sept D, Sibley LD (2004) Dinitroanilines bind α-tubulin to disrupt microtubules. Nol Biol Cell 15:1960–1968

    Google Scholar 

  • Morrissette NS, Sibley LD (2002) Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci 115:1017–1025

    PubMed  CAS  Google Scholar 

  • Nichols BA, Chiappino ML (1987) Cytoskeleton of Toxoplasma gondii. J Protozool 34:217–226

    PubMed  CAS  Google Scholar 

  • Nichols BA, Chiappino ML, PAvesio CE (1994) Endocytosis at the micropore of Toxoplasma gondii. Parasitol Res 80:91–98

    Article  PubMed  CAS  Google Scholar 

  • Overath P, Englster M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53:735–744

    Article  PubMed  CAS  Google Scholar 

  • Parón A, Mondragón M, González S, Ambrosio JR, Guerrero AL, Mondragón R (2005) Identification and purification of actin from the subpellicular network of Toxoplasma gondii tachyzoites. Mol Biochem Parasitol 35:883–894

    Google Scholar 

  • Pimenta PF, De Souza W (1985) Fine structure and cytochemistry of the endoplasmic reticulum and its association with the plasma membrane of Leishmania mexicana amazonensis. J Submicroscop Cytol 17:413–419

    CAS  Google Scholar 

  • Pinder JC, Fowler RE, Dluzewski AR, Bannister LH, Lavin FM, Mitchell GH, Wilson RJ, Gratzer WB (1998) Actomyosin motor in the merozoite of the malaria parasite. Plasmodium falciparum: implications for red cell invasion. J Cell Sci 111:1831–1839

    PubMed  CAS  Google Scholar 

  • Porchet E, Torpier G (1977) Etude du germe infectieux de Sarcocystis tenella ET Toxoplasma gondii par la technique du cryodecapage. Z Parasitenkd 54:101–124

    Article  PubMed  CAS  Google Scholar 

  • Ravindran S, Boothroyd JC (2008) Secretion of proteins into host cells by Apicomplexan parasites. Traffic 9:647–656

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DJ, Fujioka H, Fried M, Keister DB, Aikawa M, Kaslow DC (1992) Alpha-tubulin II is a male-specific protein in Plasmodium falciparum. Mol Biochem Parasitol 56:239–250

    Article  PubMed  CAS  Google Scholar 

  • Rindisbacher L, Hemphill A, Seebeck T (1993) A repetitive protein from Trypanosoma brucei which caps the microtubules at the posterior end of the cytoskeleton. Mol Biochem Parasitol 58:83–96

    Article  PubMed  CAS  Google Scholar 

  • Roberts WL, Hammond DM (1970) Ultrastructural and cytological studies on sporozoites of four Eimeria species. J Protozool 17:76–86

    PubMed  CAS  Google Scholar 

  • Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K (1995) Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 128:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Russel DG, Burns RG (1984) The polar ring of coccidion sporozoites: a unique microtubule-organizaing center. J Cell Sci 65:193–207

    Google Scholar 

  • Sahasrabuddhe AA, Gupta CM (2009) Trypanosomatid actins: a new class of eukaryotic actins. Trends Cell Mol Biochem 4:15–23

    Google Scholar 

  • Sahasrabuddhe AA, Bajpai VK, Gupta CM (2004) A novel form of actin in Leishmania: molecular characterization, subcellular localization and association with subpellicular microtubules. Mol Biochem Parasitol 134:105–114

    Article  PubMed  CAS  Google Scholar 

  • Sahoo N, Beatty W, Heuser J, Sept D, Sibley LD (2006) Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol Biol Cell 17:895–906

    Article  PubMed  CAS  Google Scholar 

  • Sasse R, Gull K (1988) Tubulin post-translational modifications and the construction of microtubular organelles in Trypanosoma brucei. J Cell Sci 90:577–589

    PubMed  CAS  Google Scholar 

  • Schatten H, Sibley LD, Ris H (2003) Structural evidence for actin-like filaments in Toxoplasma gondii using high-resolution lwo voltage field emission scanning electron microscopy. Microsc Microanal 9:330–335

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Sherwin T, Sasse R, Russel DG, Gull K, Seebeck T (1987) Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated. J Cell Biol 104:431–438

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Hemphill A, Wyler T, Seebeck T (1988) Large microtubule-associated protein of T. brucei has tandemly repeated, near-identical sequences. Science 241:459–462

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Plessmann U, Weber K (1997) Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated. J Cell Sci 110:431–437

    PubMed  CAS  Google Scholar 

  • Schuler H, Matuschewski K (2006a) Regulation of Apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 7:1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Schuler H, Matuschewski K (2006b) Plasmodium motility: actin not actin’s like actin. Trends Parasitol 22:146–147

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman JD, Pfefferkorn ER (1983) Immunofluorescence localization of myosin at the anterior pole of the coccidian Toxoplasma gondii. J Protozool 30:657–661

    PubMed  CAS  Google Scholar 

  • Scott V, Sherwin T, Gull K (1997) Gamma-tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres. J Cell Sci 110:157–168

    PubMed  CAS  Google Scholar 

  • Seebeck T, Gehr P (1983) Trypanocidal action of neuroleptic phenothiazines in Trypanosoma brucei. Mol Biochem Parasitol 9:197–208

    Article  PubMed  CAS  Google Scholar 

  • Shaw MK, Tilney LG (1999) Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite. Proc Natl Acad Sci USA 96:9095–9099

    Article  PubMed  CAS  Google Scholar 

  • Sheffield HG, Melton ML (1968) The fine structure and reproduction of Toxoplasma gondii. J Parasitol 54:209–226

    Article  PubMed  CAS  Google Scholar 

  • Sherwin T, Gull K (1989) The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Phil Trans R Soc Lond B 323:573–588

    Article  CAS  Google Scholar 

  • Soares TC, De Souza W (1977) Fixation of trypanosomatids for electron microscopy with the glutaraldehyde-tannic acid method. Z Parasitenkd 53:149–154

    Article  PubMed  CAS  Google Scholar 

  • Souto-Padron T, De Souza W, Heuser JE (1984) Quick-freeze, deep-etch rotary replication of Trypanosoma cruzi and Herpetomonas megaseliae. J Cell Sci 69:167–178

    PubMed  CAS  Google Scholar 

  • Souto-padron T, Cunha e Silva NL, De Souza W (1993) Acetylated alpha-tubulin in Trypanosoma cruzi: immunocytochemical localization. Mem Inst Oswaldo Cruz 88:517–528

    Article  PubMed  CAS  Google Scholar 

  • Speer CA, Dubey JP (2001) Ultrastructure of schizonts and merozoites of Sarcocystis neurona. Vet Parasitol 95:263–271

    Article  PubMed  CAS  Google Scholar 

  • Stieger J, Wyler T, Seebeck T (1984) Partial purification and characterization of microtubular protein from Trypanosoma brucei. J Biol Chem 259:4596–4602

    PubMed  CAS  Google Scholar 

  • Stokkermans TJ, Schwartzman JD, Keenan K, Morrissete NS, Tilney LG, Roos DS (1996) Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp Parasitol 84:355–370

    Article  PubMed  CAS  Google Scholar 

  • Thomas MC, Garcia-Perez JL, Alonso C, Lopez MC (2000) Molecular characterization of KMP11 from Trypanosoma cruzi: a cytoskeleton-associated protein regulated at the translational level. DNA Cell Biol 19:47–57

    Article  PubMed  CAS  Google Scholar 

  • Vanderberg J, Rhodin J, Yoeli M (1967) Electron microscopic and histochemical studies of sporozoite formation in Plasmodium berghei. J Protozool 14:82–103

    Google Scholar 

  • Vedrenne C, Giroud C, Robinson D, Besteiro S, Bosc C, Bringaud F, Baltz T (2002) Two related subpellicular cytoskeleton-associated proteins in Trypanosoma brucei stabilize microtubules. Mol Biol Cell 13:1058–1070

    PubMed  CAS  Google Scholar 

  • Vivier E, Petitprez A (1972) Donnés ultrastructurales complémentaries, morphologiques et cytochimiques, sur Toxoplasma gondii. Protistologica VII:199–221

    Google Scholar 

  • Webb SE, Fowler RE, O'Shaughnessy C, Pinder JC, Dluzewski AR, Gratzer WB, Bannister LH, Mitchell GH (1996) Contractile protein system in the asexual stages of the malaria parasite Plasmodium falciparum. Parasitology 112:451–457

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Schneider A, Muller N, Plessmann U (1996) Polyglycylation of tubulin in the diplomonad Giardia lamblia, one of the oldest eukaryotes. FEBS Lett 393:27–30

    Article  PubMed  CAS  Google Scholar 

  • Webovetz KA, Sackett DL, Delfin D, Bhattacharya G, Salem M, Obrzut T, Rattendi D, Bacchi C (2003) Selective antimicrotubule activity of N1-phenyl-3, 5-dinitro-N4, N4-di-n-propylsulfanilamide (GB-II-5) against kinetoplastid parasites. Mol Pharmacol 64:1325–1333

    Article  Google Scholar 

  • Westermann S, Schneider A, Horn EK, Weber K (1999) Isolation of tubulin polyglutamylase from Crithidia; binding to microtubules and tubulin, and glutamylation of mammalian brain alpha- and beta-tubulins. J Cell Sci 112:2185–2193

    PubMed  CAS  Google Scholar 

  • Woods A, Baines AJ, Gull K (1992) A high molecular mass phosphoprotein defined by a novel monoclonal antibody is closely associated with the intermicrotubule cross bridges in the Trypanosoma brucei cytoskeleton. J Cell Sci 103:665–675

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work carried out at the authors’ laboratory was supported by CNPq/MCT, FINEP, CAPES, DECIT, and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanderley de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Souza, W., Attias, M. (2010). Subpellicular Microtubules in Apicomplexa and Trypanosomatids. In: de Souza, W. (eds) Structures and Organelles in Pathogenic Protists. Microbiology Monographs, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12863-9_2

Download citation

Publish with us

Policies and ethics